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Abstract With an abundance of social network data being released, the need
to protect sensitive information within these networks has become an impor-
tant concern of data publishers. To achieve this objective, various notions of
k-anonymization have been proposed for social network graphs. In this paper
we focus on the complexity of optimization problems that arise from trying
to anonymize graphs, establishing that optimally k-anonymizing the label se-
quences of edge-labeled graphs is intractable. We show how this result implies
intractability for other notions of k-anonymization in literature.

We also consider the case of bipartite social network graphs which arise
from the representation of distinct entities, such as movies and viewers, pa-
tients and drugs, or products and customers. Within this setting we demon-
strate that, although k-anonymizing edge-labeled graphs is intractable for
k ≥ 3, polynomial time algorithms exist for arbitrary bipartite graphs when
k = 2 and for unlabeled bipartite graphs irrespective of the value of k.

Finally, in this paper we extend the study of attribute disclosure within
the context of social networks by defining t-closeness, a measure of how effec-
tively an adversary can determine sensitive information about members of a
k-anonymous social network.

Keywords privacy · social networks · complexity · k-anonymity · table
graphs

1 Introduction

The social web’s recent explosive growth is exciting for the novel analysis and
mining opportunities it presents. Entities and the links between them emerge
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on countless platforms and out of myriad websites, providing social data at an
unprecedented level, the characteristics of which can be quite unique to context
(see, for example, the study by Cha et al. [7] of content dissemintation in
blogs). An especially interesting example is the PatientsLikeMe social network
platform.1 Here, members (entities) get the chance to connect (establish links)
with others who are dealing with similar health issues. Measuring the strength
of associations that formed through the platform could provide vital data in
the study for disease research. However, the social network platform inherently
contains sensitive information that patients would not want divulged; can we
ensure that the meaningful study of such platforms will not compromise the
confidentiality of their participants?

It has already been shown that naive attempts to hide this sensitive in-
formation do not work [4,13]. In the last five years, more sophisticated k-
anonymization-based techniques have been proposed by adopting the idea that
the confidentiality of the participants can be protected if the structural prop-
erties used for an attack are not unique to fewer than k participants. Each
technique differs in terms of the structural property under consideration. What
is not apparent from this literature, however, is the computational challenge
involved in establishing the k-anonymous conditions without severly distorting
the network.

In this paper, we undertake a systematic investigation of the hardness of
anonymization, establishing not only previously unknown hardness results for
many notions of graph k-anonymization but also a framework for determining
hardness of future notions of graph k-anonymity. We accomplish this via two
natural generalizations of the k-degree anonymity present in literature. First,
when social network data is represented as a graph, we would perhaps prefer
to anonymize only a subset of the nodes. For example, in a social network,
some users may agree to have their information released, while others wish
to remain anonymous (see Yuan et al. [23]). This generalization gives rise
to what we introduce and focus on, the problem of subset anonymization.
Second, the graph representing a social network often has labeled edges. A
label provides auxiliary information regarding an association. As an example,
one can construct an implicit social network among shoppers by linking them
to products they have purchased, and the label on each edge could be data
such as dates of purchase, quantities, ratings, etc. In general, edge weights
allow one more sophistication in modeling the network, which could lead to
more sophisticated analysis (such as with the generalized network measures
proposed by Adbdallah [1]).

These considerations lead to our k-label sequence subset anonymity prob-
lem in which we are given an edge-labeled graph G and we would like to ensure
that a given subset of vertices of G is k-label sequence anonymous by adding
a minimum number of edges. We will also study this problem for bipartite
graphs, where the vertices to be anonymized are from one side of the biparti-
tion. The bipartite model is useful in cases where vertices represent two types

1 http://www.patientslikeme.com.
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of entities, edges exist only between entities of different types, and only one
type of entity needs to be anonymized. An example of this would be a graph
representing interactions between customers and products. (See the study of
bipartite network graphs by Zweig and Kaufmann [26] for other examples.)

Finally, we look beyond the issue of identity disclosure in social networks
to the privacy concern of attribute disclosure. We adapt for graphs the no-
tion of t-closeness from the table anonymity literature and prove that it, too,
is NP-complete when coupled with k-anonymization based on k-vertex-label
sequence anonymity.

Our Results We introduce algorithms and hardness results for labeled and
unlabeled graphs. In the edge-labeled case we consider k-anonymization with
respect to the collection of labels of incident edges. In §5 we deal with k-
anonymization of subsets in arbitrary labeled graphs. Using a class of graphs,
table graphs, that we introduce in §4, we prove the hardness of many seem-
ingly different notions of graph anonymization that have already appeared
in the literature, providing a uniform approach to the complexity of graph
anonymization problems.

In §6 we consider subset k-anonymization of bipartite graphs. Considering
first labeled graphs, we provide, for k = 2, a polynomial time algorithm based
on a recent algorithm of Anshelevich and Karagiozava [3] for finding minimum
weight perfect matching in hypergraphs with edges of size two or three. When
k ≥ 3 we show that the problem is NP-complete.

In the unlabeled case, we consider k-anonymization with respect to the de-
gree of vertices. In §6.2 we present an algorithm for subset k-degree anonymiza-
tion of unlabeled bipartite graphs that runs in time O(n(k+ dmax) + n logn),
where n is the number of vertices in the graph and dmax is the maximum
degree of a vertex in the graph. We use a dynamic programming approach to
achieve this bound.

Finally, in §7, we motivate adapting from the table privacy literature the
notion of t-closeness (Definition 12), a more robust preventive measure for
attribute disclosure attacks than yet published. We show that if this is consid-
ered in conjunction with a natural choice of preventitive measure for identity
disclosure attacks, then it is NP-complete, too.

2 Related Work

In recent years, many interesting definitions for graph anonymization have
been proposed and studied. Each of them starts by modeling the background
information that an adversary will use to attack the data. Once that is done,
a notion of anonymity is defined and studied.

Liu and Terzi proposed a simple graph anonymization technique to prevent
identity disclosure attacks [16]. They assume that the adversary has prior
knowledge of degrees of certain vertices in the network, and may use this
information to try and identify certain nodes in the network. To fight such
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attacks, they defined the concept of k-degree anonymity. A graph G = (V,E)
is said to be k-degree anonymous if for every vertex v ∈ V, there are at least
k − 1 other vertices in V with equal degree to that of v.

Hay et al. [13] model the information available to the adversary using two
types of queries–vertex refinement queries and subgraph knowledge queries–
and study the vulnerability of various datasets under such an attack. They
propose an anonymization technique based on random perturbations against
such adversaries.

Zheleva and Getoor [24] study the problem of protecting certain sensi-
tive edges in an edge-labeled graph under link re-dentification attacks. They
propose anonymization techniques using edge-removal and node-merging to
prevent such attacks.

Zhou and Pei [25] focus on neighbourhood attacks, which was expanded by
Tripathy and Panda [21]. In their model, an adversary uses information about
a node’s neighbours to target them. To prevent such attacks, they define a
notion of k-anonymity on graphs so that nodes in an anonymized group will
have isomorphic neighbourhoods.

Thompson and Yao [20] study i-hop degree-based attacks. In their model
an adversary’s prior knowledge includes the degree of the target and the degree
of its neighbours within i hops. Thomson and Yao use bipartite graphs, namely
the Netflix Prize Data, to help motivate their work.

Wu et al. [22] proposed the k-symmetry model. They state for any vertex v
in the network, there exists at least k−1 structurally equivalent counterparts.
The authors also proposed sampling methods to extract approximate versions
of the original network from the anonymized network so that statistical prop-
erties of the original network could be evaluated.

Cormode et al. [10] consider a new family of anonymizations for bipartite
graph data called (k, l)-groupings. These groupings were used to preserve the
underlying graph structure perfectly, and instead anonymize the mapping from
entities to nodes of the graph. They created “safe” groupings that were able
to withstand a set of known attacks.

A common limitation among most of this work is that there is no study of
the hardness of the privacy notions proposed. An earlier version of our work
appeared at ASONAM 2011 [14]; combined with our further contributions
here, this is the first research to address this limitation.

On another note, Li et al. [15] identify two types of privacy attack for data,
namely identity disclosure and attribute disclosure. Identity disclosure often
leads to attribute disclosure. Identity disclosure occurs when an individual is
identified within a dataset, whereas attribute disclosure occurs when sensi-
tive information that an individual wished to keep private is identified. These
aforementioned works all protect against identity disclosure.

Regarding attribute disclosure, Machanavajjhala et al. [17] introduced for
tabular data the notion of l-diversity, wherein each k-anonymous equivalence
class requires l different values for each sensitive attribute. In this way, l-
diversity looks to not only protect identity disclosure, but was also the first
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attempt to protect against attribute disclosure. Zhou and Pei adapt the work
of Machanavajjhala et al. by defining l-diversity for graphs [25].

To address the shortcomings of l-diversity, Li et al. [15] introduced t-
closeness, which requires that the distribution of attribute values within each
k-anonymous equivalence class needs to be close to that of the attribute’s dis-
tribution throughout the entire table. This work has not been adapted for the
social network setting, which is a contribution of ours in §3. We also note that
a form of attribute disclosure has been studied in our earlier work [9], but
the work is dissimilar in spirit to this in that we strove there to protect the
attribute of a target vertex’s friends, as opposed to that of the target itself.

3 Preliminaries

In this section, we define the concept of k-anonymity for tables, unlabeled
graphs and labeled graphs. While notions of k-anonymity for tables and unla-
beled graphs have been studied previously, k-anonymity for labeled graphs is
introduced in this paper.

Throughout, we investigate numerous subset anonymization problems. Here
we abstractly describe the primary problem of interest throughout the paper:

Problem 1 (k-Subset Anonymization Problem (k-SAP):) Given a graph
G = (V,E, Σ), X ⊆ V, find a
graph G′ = (V,E∪E′, Σ ∪Σ′) such that E′ ⊆ V×V× (Σ ∪Σ′), the sequence
corresponding to X is k-anonymous in G′, and the number of new edges added,
|E′|, is minimized.

3.1 Tables and k-Anonymity

Table Anonymization has been extensively studied [2,6,11,12,18,19]. Suppose
we want to publish a table of data containing potentially sensitive information.
Each attribute in the table can be considered as either an identifying attribute
(such as social insurance number, or student id), a quasi-identifier (such as
age or postal code) which combined with other quasi-identifiers can reveal the
identity of a record, or a sensitive attribute (such as disease or income).

Clearly, identifying attributes must be stripped from the table, but this
alone does not guarantee privacy. To help protect the data, we have the ability
to suppress the data entries in the quasi-identifier attributes of the table with
*’s. To achieve k-anonymization by suppressing the entries, we require that
after suppression, for any given row in the table, there are k − 1 other rows
that look identical with respect to the quasi-identifying attributes. Throughout
this paper, we treat tables as having only quasi-identifying attributes, because
the sensitive attributes do not affect k-anonymization.

If we want to 2-anonymize the example table data in Figure 1(a), then
using the fewest suppressions to achieve 2-anonymity would produce the table
in Figure 1(b).
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Fname LName Age Grad Year

Harry Potter 30 2012
John Connor 45 2013
Harry Houdini 30 2010
Sarah Connor 32 2013

(a) Example table data prior to
anonymization

Fname LName Age Grad Year

Harry * 30 *
* Connor * 2013

Harry * 30 *
* Connor * 2013

(b) Optimal 2-anonymization of example
table data

Fig. 1 Example of k-anonymization of table data

Definition 1 A table consists of a multiset V of rows, that is, sequences of
length m over a set Σ of entry values. Let t : V −→ (Σ

⋃

{∗})m. If for all v ∈ V
and j = 1, . . . ,m it is the case that t(v)j ∈ {vj , ∗}, we call t a suppressor.
The table t(V ) resulting from a suppressor t is defined to be k-anonymous iff
for all v ∈ V there exist at least k − 1 distinct rows v1, . . . , vk−1 such that
t(v) = t(v1) = . . . = t(vk−1). In other words, after applying t, each row is
identical to at least k − 1 other rows.

3.1.1 Anonymizing entries is hard

Meyerson and Williams [18] showed that the problem of finding the minimum
number of suppressions to anonymize a table was proven NP-hard for k ≥ 3
and |Σ| ≥ n, where n denotes the number of rows of the table (|V |). From
this, Aggarwal et al. [2] lowered the alphabet size to |Σ| = 3. Finally, it was
shown by Bonizzoni et al. [6] that the problem remains hard for |Σ| = 2 and
k ≥ 3.

3.2 Unlabeled Graphs and k-Anonymity

Let G = (V,E) be a simple graph where V denotes the set of vertices and
E denotes the set of edges. We denote the degree of a vertex v by d(v). The
analogous notion of k-anonymity in the social network setting is to exploit
structural knowledge of the graph as a quasi-identifier. In this way, vertices in
the social network graph must be identical to at least k-1 other vertices with
respect to that structural knowledge. Here we provide the definitions needed
to formalise the description of an attack. In general anonymizing graphs to
prevent structural attacks is quite challenging, because, unlike in the table
setting, vertices are not independent of each other: altering the structure of
one vertex necessitates altering the structure of another simultaneously.

Definition 2 (Degree Sequence) Let X = {x1, x2, . . . , xn}, X ⊆ V, be
a subset of vertices of G. The degree sequence of X is (d1, d2, . . . , dn) where
di = d(xi) is the degree of the vertex xi.
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Definition 3 (Degree Anonymity) A sequence of values S = (s1, s2, . . . , sn)
is said to be k-degree-anonymous if every distinct value in S occurs at least k
times. A subset of vertices X in an unlabeled graph G is k-degree-anonymous
if its degree sequence is k-degree-anonymous.

Problem 2 (k-Degree-Based Subset Anonymization Problem (k-D-
SAP)): Given a graph G = (V,E), X ⊆ V, find a graph G′ = (V,E∪E′) such
that X is k-degree-anonymous in G′ and the number of new edges added, |E′|,
is minimized.

Note: We state our anonymization problems in the optimization version
of [2,6,18], and indeed the algorithms we give are naturally viewed in this way.
On the other hand, for hardness, we in fact deal with the decision version of
these problems. That is, we have another input t ∈ N, and we ask whether
there is a set E′ of edges such that G′ is k-anonymous and |E′| ≤ t.

Example 1 Here we present a small example of k-D-SAP. Consider the graph
G in Figure 2(a). Suppose we want 2-anonymity for the subset of vertices
{v1, v2, v5, v6}, which has degree sequence (2, 4, 2, 2). Adding the dotted edges
of Figure 2(b) will result in the degree sequence (2, 4, 2, 4), which is 2-anonymous.
Since, for 2-anonymity, we require at least 2 vertices of degree 4 in the sequence,
the number of edges added is the minimum.

3.3 Labeled Graphs and k-Anonymity

Edge-labeled graphs are a natural model for the representation of social net-
works and related forms of data. The PatientsLikeMe database, for exam-
ple, can be represented with nodes users and labeled edges to represent how
strongly or frequently users interact with each other.

Definition 4 (Edge-labeled Graph) An edge-labeled graph is a tuple G =
(V,E, Σ) where V is the set of vertices, Σ is the label set and E ⊆ P2(V)×Σ,
is the set of (labeled) edges. Here P2(V) denotes the 2-element subsets of V. E
must satisfy the property that there is at most one ℓ ∈ Σ such that ({u, v}, ℓ) ∈
E. If ({u, v}, ℓ) ∈ E is a labeled edge, we say that ℓ is the label of edge {u, v}.

Definition 5 (Label Sequence) For v ∈ V, we say that Sv = (ℓ1, ℓ2, . . . , ℓm)
is a label sequence of v if it corresponds to some ordering of the labels of
the edges incident on v. We consider label sequences to be equivalent up to
permutations.2

Definition 6 (Label Sequence Anonymity) Given an edge-labeled graph
G = (V,E, Σ), a subset X ⊆ V of vertices is k-label sequence anonymous in
G if for every vertex v in X , there are at least k− 1 vertices in X whose label
sequence is equivalent to the label sequence of v. If v and v′ are vertices with
equivalent label sequences we say that they are similar and write v ≡ v′.

2 We use permutation-invariant sequences rather than multisets to avoid the need to deal
explicitly with multiplicities.
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(a) Graph G (b) 2-Anonymized subset anonymity

(c) Graph H (d) 2-Label sequence anonymization
of X in H

Fig. 2 Example 1: k-D-SAP and Example 2: k-LS-SAP

Clearly ≡ is an equivalence relation and so induces a partition X/≡ of X .
We now define the anonymization problem for subsets of labeled graphs.

Problem 3 (k-Label Sequence-Based Subset Anonymization Prob-
lem (k-LS-SAP)): Given an edge-labeled graph G = (V,E, Σ), X ⊆ V, find
an edge-labeled graph G′ = (V,E∪E′, Σ ∪Σ′) such that X is k-anonymous in
G′ and the number of edges added, |E′|, is minimized. We call E′ an anonymiz-
ing set of edges for X.

In other words, we would like to k-anonymize X by adding the minimum
number of new labeled edges to G. Note that the added edges may have labels
from an expanded set Σ ∪Σ′.

Example 2 Here we present an example of subset label sequence anonymiza-
tion. Consider graph H in Figure 2(c). Here, if we have X = {v1, v2, v5, v6},
with k = 2, similar to Example 1, adding the dotted edges in Figure 2(d) with
the given edge labels gives us 2-label-sequence-based anonymity. In this case
it is not sufficient just to have a 2-anonymous degree sequence; we must also
consider the labels of incident edges for each vertex.
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Patient Ailment
A Flu
B Fever
C ADD
D Cancer
E Heart Disease

(a) Patient table

Drug Name
1 Ritalin
2 Aspirin
3 Tylenol
4 Penicillin
5 Diuretic

(b) Drug table

Pat Drug Pat Drug
A 1 D 4
A 2 D 5
B 1 E 3
B 2 E 4
C 1 E 5
C 3

(c) Patient-Drug join

(d) G = (V,W,E ⊆ V×W)

Fig. 3 A join relation between patients and drugs and the corresponding bipartite graph

3.4 Tables as Bipartite Graphs

As previously mentioned, table data is often easily represented using graphs,
particularly bipartite graphs.

Definition 7 A simple bipartite graph is a triple (V,W,E) where V and W
are vertex sets, and E ⊆ V ×W is the set of edges. The pair (V,W) is called
a bipartition, and V and W are respectively called the left and right sides of
the bipartition.

Example 3 Consider a relational database consisting of a table for patients,
a table for prescription drugs, and a table for the treatment of patients with
the drugs. In Figure 3, we see an example instance of this database, and also
its representation using a bipartite graph. Here patients are represented by
vertices in V, drugs by vertices in W, and the viewing relation is represented
by edges between V and W. We could label edges in the graph of Figure 3(d)
to introduce more information such as treatment time for each patient with
the given drug.
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3.5 Vertex-labeled Graphs and t-Closeness

Another type of labeled graph is a vertex-labeled graph, in which labels are
associated with vertices rather than edges. Such graphs arise naturally out of
a social network context when the supplementary information embedded in
the network relates to entities rather than associations. For example, we could
label the left vertices of the graph in Figure 3(d) with their ailment indicated
in Figure 3(a). In this case, the vertex contains a sensitive label, because it
has been labeled with a sensitive attribute from the table. We do note that a
vertex-labeled graph is a special case of an edge-labeled graph.3 Nonetheless,
they are very interesting in their own right because they arise naturally and
because they have implications in terms of attribute disclosure when the label
is sensitive.

Before detailing our notion of anonymity to protect against attribute dis-
closure, we formalize the attack. Specifically, we are assuming that the social
network is an undirected, simple, vertex-labeled graph:

Definition 8 (Vertex-labeled Graph) A vertex-labeled graph is a graph
G = (V,E, Σ, ℓ), where V is a vertex set, E ⊆ V × V is the edge set, Σ is an
alphabet of labels, and ℓ = V 7→ Σ is a labeling function that assigns a label
l ∈ Σ to each vertex in V For simplicity, (u, v) ∈ E → (v, u) ∈ E. We assume
for convenience that the elements of Σ are ordered.

An attribute disclosure attack occurs when an adversary can refine his
knowledge about the label of a target vertex. To model this knowledge gain,
it is important to consider the distribution of labels over a set of vertices:

Definition 9 (Label Distribution) For W ⊆ V, let count(li,W) denote
the number of vertices in the set W which have label li. Then, the label dis-

tribution over W, denoted distr(W), is the vector
〈count(l1,W),...,count(l|Σ|,W)〉

|W| .

Also, the distribution of a particular label, li is one element of the vector,
count(li,W)/|W|.

Then, given two distributions distr(W1), distr(W2), W1,W2 ⊆ V we define
a distance measure as the standard L1 norm:

Definition 10 (Distance ∆ between Two Distributions) Given two dis-
tributions, distr(W1) =

〈

W11, . . . ,W1|Σ|

〉

and distr(W2) =
〈

W21, . . . ,W2|Σ|

〉

,
the distance between them, denoted ∆(distr(W1), distr(W2)), is

∆(distr(W1), distr(W2)) =

|Σ|
∑

i=1

|W1i −W2i|.

For example, the distributions 〈.7, .2, .1〉 and 〈.2, .4, .4〉 have a distance of
.5+.2+.1=.8.

3 To see this, consider that any vertex-labeled graph can be transformed into a unique
edge-labeled graph by labeling every edge (u, v) as {l(u), l(v)}.
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Given these definitions, we can now formally describe the adversary’s at-
tack. By identifying the equivalence class Y of a node v in a vertex-labeled
graph, an adversary gains knowledge about the sensitive label of v. Whereas
beforehand, he could only surmise the probability that that label of v is li to be
count(li,V)/|V|, he now knows that the probability is closer to count(li, Y )/|Y |.
That is:

Definition 11 (Attribute Disclosure (AD) Attack) An attribute disclo-
sure attack against a vertex v in a graph G = (V,E, Σ, ℓ) is one in which the
adversary, by knowing the equivalence class Y ⊆ V containing v, discovers
a more refined estimate of the label of v than he had when he only knew
distr(V). His knowledge gain is ∆(distr(V), distr(Y )).

To combat this type of attack, we define t-closeness for graphs, wherein
the distance from the label distribution of any equivalence class to that over
the entire vertex set must be within t:

Definition 12 (t-Closeness) An equivalence class Y is said to be t-close in
a graph G = (V,E, Σ, ℓ) if ∆(distr(Y ), distr(V)) ≤ t. A vertex-labeled graph
G is t-close if every equivalence class of V is itself t-close.

We leave the definition of equivalence class of V open, so that t-closeness
is defined in conjunction with any notion of k-anonymity, whether based on
label sequence, isomorphism, or symmetry. We consider it in conjunction with
label sequences in §7.

4 A Unified Framework for Establishing Hardness for
k-Anonymization Problems

In this section, we introduce a special class of graphs called table graphs. Our
new notion of table graphs presented here can be viewed as a unifying frame-
work to prove hardness results for graph k-anonymization. Many earlier pa-
pers showed schemes that worked well in practice. However, the complexity
of the various notions of graph anonymization are poorly understood (with
the exception of Zhou and Pei [25] who showed the hardness of neighbour-
hood anonymity for vertex-labeled graphs). We demonstrate here that many of
these various notions (e.g., neighbourhood anonymity (§5.2), 1-hop anonymity
(§5.3), and k-symmetry anonymity (§5.4)) can be reduced to k-Table Graph
Anonymization in order to establish their hardness.

Definition 13 (Table Graphs) An edge-labeled graph G = ((U,V,W),E, Σ)
is an n× l table graph if:

– |U| = n and |V|, |W| = l for some n and l
– E ⊆ (U×V ×Σ) ∪ (U×W ×Σ)
– All edges incident to vi ∈ V, 1 ≤ i ≤ l, are labeled 2(i− 1)
– All edges incident to wi ∈ W, 1 ≤ i ≤ l, are labeled 2(i− 1) + 1.
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Problem 4 (k-Table Graph Anonymization):
Given an n × l table graph G = ((U,V,W),E, Σ) and X ⊆ W, construct an
n×l table graph G′ = ((U,V,W),E∪E′, Σ∪Σ′) such that X is k-label sequence
anonymous in G′ and |E′| is minimized.

In the next section we prove that k-LS-SAP is NP-complete, a corollay of
which is that k-Table Graph Anonymization is NP-complete. We then il-
lustrate the application of our unifying framework to establishing hardness for
other measures of graph anonymization, namely neighbourhood anonymiza-
tion, k-symmetry, and i-hop anonymity. It is easily verified that a polynomial-
size certificate of membership in NP exists for all three problems; therefore,
we are demonstrating that the problems are NP-complete.

5 Hardness of LS-SAP and Table Graph Problems

In this section, we prove Theorem 1. We then use this result to show NP-
completeness of many different notions of graph anonymization introduced
recently.

Theorem 1 For k ≥ 3, k-LS-SAP is NP-complete.

5.1 Labeled Sequence and Table Graph Anonymization

Let k ≥ 3 be any fixed integer. To show hardness of k-LS-SAP we build
a reduction to the decision version of k-LS-SAP from the NP-hard table
anonymization problem introduced in §3.

Problem 5 (k-ENTRY-ANONYMITY):
Input: a table T with n rows and l columns (also called attributes) with entries
over {0, 1} and an integer t.

Question: Can the rows of T be k-anonymized by suppressing at most t entries
of T? Here, an entry (0 or 1) is said to be suppressed if it is replaced by *.

Reduction: Our reduction is described as follows: given a table T, let T(m,j) ∈
{0, 1} denote the value of attribute j in row m. Then, the edge-labeled graph
GT corresponding to T is constructed as follows:

– VT = {r1, r2, . . . , rn} ∪ {cij|1 ≤ j ≤ l, i ∈ {0, 1}}.

– ET = {(rm, cij , 2(j − 1) + i)|T(m,j) = i, 1 ≤ m ≤ n, 1 ≤ j ≤ l, i = 0, 1} ∪
{(ri, rj , 2l)|1 ≤ i, j ≤ n}.

– ΣT = {0, 1, . . . , 2l}.
– Finally, remove all isolated vertices from GT.
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In other words, we encode a binary table as an edge-labeled graph in which
a row vertex rm ∈ VT is connected to a column vertex c0j ∈ VT (alt., c1j ∈ VT)
with label 2(j − 1) (2(j − 1) + 1) if the (m, j)th entry of the table is 0 (1).

Let X = {r1, . . . , rn} denote the set of row vertices of GT. Since there are
already edges between every pair of vertices in X , no anonymizing edges will
be added between these vertices. We will show that T can be k-anonymized by
suppressing at most t entries if and only if we can k-anonymize X by adding
at most t new labeled edges.

Let G′
T be any graph obtained from GT such that X is k-anonymous in

G′
T and it has the minimum number of new edges added. Suppose that E′

T

is an anonymizing set of edges for X . Letting ≡ denote vertex similarity in
the anonymized graph, let Y = {y1, . . . , ym} be an equivalence class of X/≡,
where m ≥ k. We begin by establishing properties that any anonymizing set
E′
T of minimum size must satisfy.
Let Y = {y1, . . . , ym} be an equivalence class of X/≡, where m ≥ k.

Lemma 1 shows that the anonymization procedure only introduces edges with
labels already in ΣT.

Lemma 1 If there is an edge in E′
T labeled ℓ that is incident to Y then there

is an edge in ET labeled ℓ that is incident to Y .

Proof Suppose ℓ is the label of an edge in ET ∪E′
T that is incident to a vertex

y ∈ Y . Then there must be an edge in ET with label ℓ incident to some vertex
y′ ∈ Y . If this were not the case, then we may remove all edges labeled ℓ
from E′

T which are incident to vertices in Y , and maintain the similarity of all
vertices in Y with a smaller anonymizing set of edges.

Lemma 2 shows that at most one edge with label ℓ is incident to a row
vertex of VT.

Lemma 2 For every i ∈ {0, 1}, and every j ∈ {1, 2, . . . , l}, the label 2(j−1)+i
appears at most once in the label sequence of a vertex y ∈ Y .

Proof We first show that if there is an edge in ET labeled ℓ that is incident to
y ∈ Y then there is no edge in E′

T labeled ℓ that is incident to y. The proof
proceeds by contradiction. Suppose there is such an edge labeled ℓ in ET ∪E′

T

that appears more than once. So the label ℓ occurs more than once in the
label sequence of y, and hence of every node in Y . By construction only one
of these occurrences is due to an edge in ET. We may remove the edges in
E′
T corresponding to the other occurrences and maintain the similarity of all

vertices in Y with a smaller anonymizing set E′
T. On the other hand, suppose

that there is an edge labeled ℓ in E′
T that appears more than once and is

incident to y but there is no edge labeled ℓ in ET. Then, we note again we
may remove all edges labeled ℓ from E′

T which are incident to vertices in Y ,
and maintain the similarity of all vertices in Y with a smaller anonymizing set
E′
T.

Lemma 3 There is no edge labeled 2l in E′
T that is incident to Y .
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Proof Suppose that there is an edge labeled 2ℓ in E′
T incident to y ∈ Y . Since

the number of edges labeled 2ℓ is the same for every vertex of Y in GT, there
must be an edge labeled 2ℓ in E′

T incident to every vertex of Y . We may remove
all edges labeled 2ℓ from E′

T which are incident to vertices in Y , and maintain
the similarity of all vertices in Y with a smaller anonymizing set of edges.

We now give a proof of correctness of our reduction.

Lemma 4 Given a Table T, the rows of T can be made k-anonymous by
suppressing at most t entries if and only if X can be made k-label sequence
anonymous by adding at most t edges.

Proof (If:) By Lemmata 1 and 2, it is clear that for each y ∈ Y and each j,
1 ≤ j ≤ l, y will either

1. Have exactly one incident edge labeled 2(j−1) but no incident edge labeled
2(j − 1) + 1.

2. Have exactly one incident edge labeled 2(j − 1) + 1 but no incident edge
labeled 2(j − 1).

3. Have exactly one incident edge labeled 2(j − 1) and exactly one incident
edge labeled 2(j − 1) + 1

This gives us an anonymization of the rows in T corresponding to Y .
Namely, in cases (1) or (2) we leave the corresponding table entry unchanged.
In case (3) we put a ∗ in the corresponding entry. Note that the number of
times that (3) occurs is exactly the number of edges in E′

T incident to Y . We
repeat this for each equivalence class in X/≡, and so conclude that if G can
be k-anonymized by adding edges E′

T, then T can be k-anonymized by the
suppression (i.e. replacement by a ∗) of |E′

T| entries.
(Only if:) Going from an anonymized table to an anonymized graph is quite
simple. If the anonymization procedure puts a * in place of value i in entry
(m, j) of table T, the graph anonymization procedure we will add an edge from

xm to c
(1−i)
j with weight 2(j − 1) + (1− i). If T is properly anonymized, each

row m will have k− 1 rows that are identical to it. But then in G′
T, vertex xm

will be similar to the vertices corresponding to those k − 1 rows. Intuitively,
we may view the suppression of an entry as putting both a 0 and 1 value in
that entry, and adding the corresponding edges to the graph.

Thus, we have the main theorem and corollary of this section:

Theorem 1 For k ≥ 3, k-LS-SAP is NP-complete.

Proof From Lemmata 1-4 we have that the decision version of this problem
can be reduced from k-ENTRY-ANONYMITY. Also, the decision version
of this problem is in NP. To show this, we note that the collection of the new
edges to be added along with the resulting partition of X into k-anonymized
subsets is a polynomial-size certificate of membership. Therefore, k-LS-SAP
is NP-complete.
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Corollary 1 k-Table Graph Anonymization is NP-complete.

We finish this subsection with an observation that will be useful for us
later. It uses the idea that for any edge between a row vertex and an attribute
vertex, we can always change the attribute vertex endpoint as it does not affect
the label sequence of the row vertex.

Lemma 5 We can assume, without loss of generality, that in G′
T all edges

with label 2(j − 1) + i are only of the form (rk, c
i
j) for some k, 1 ≤ k ≤ n.

Proof Given an anonymized graph G′
T, one can move edges to their proper

location in G′
T and not affect the anonymity. Notice that the anonymization

is based of the labels on the edges, not their endpoint vertices, so moving the
edges such that they follow the structure of the original graph GT makes no
change to the anonymous label sequences or anonymous groups.

5.2 Neighbourhood Anonymization

In neighbourhood anonymization, of interest is the induced graph of the im-
mediate neighbours of a vertex v. Zhou and Pei [25] studied neighbourhood
attacks in which the adversary uses prior knowledge of the connectivity of the
neighbours of a target node in a social network for identity disclosure. While
Zhou and Pei studied this notion for vertex labeled graphs and proved NP-
hardness, we prove here that the problem is also hard for edge-labeled graphs.
Neighbourhood anonymity is defined as follows:

Definition 14 (Neighbourhood Anonymity) In an edge-labeled graph
G = (V,E, Σ), the neighborhood of u ∈ V is the induced subgraph on u and
the vertices adjacent to u. A graph G is said to be k-neighbourhood anony-
mous if for a given vertex v ∈ V, there are k − 1 other vertices in V with a
neighborhood isomorphic to that of v.

For this problem, as in the case of k-LS-SAP, one is given an edge labeled
graph G and a subset of vertices X . One needs to add the fewest number
of edges to G to make X k-neighbourhood anonymous. We reduce k-Table
Graph Anonymization to k-neighbourhood anonymity.

Lemma 6 Given a table graph GT, X can be made k-label sequence anony-
mous by adding at most j edges if and only if it can be made k-neighbourhood
anonymous by adding at most j edges.

Proof (If:) This is clear since k-neighbourhood anonymity implies k-label se-
quence anonymity.
(Only if:) By Lemma 5, the optimal anonymization procedure for k-label se-
quence anonymizing X will result in the same set of neighbours for every y
in Y , where Y is an equivalence class of X . Since the set of neighbours is the
same, the induced subgraphs on the neighbours are also the same. Hence, for
table graphs, k-label sequence anonymity implies k-neighbourhood anonymity.
Therefore, k-neighbourhood anonymity is NP-hard.
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5.3 1-Hop Anonymization

Thompson and Yao [20] introduced i-hop anonymity, which focuses on the
degrees of the immediate neighbours of a node. The assumption is that infor-
mation about a node may be inferred from information about its immediate
neighbours. This assumption is similar to that of Zhou and Pei [25], that if in-
formation about a given target node and its immediate neighbours is known to
an adversary, the adversary can then use this information to attack the iden-
tity of the target node. We will show here that 1-hop labeled subset anonymity
is NP-hard. We define i-hop anonymity for edge-labeled graphs as follows.

Definition 15 (i-hop Anonymity) The i-hop fingerprint of a vertex v ∈ V,
denoted fi(v), is the sequence

({Su|u ∈ N(v, 0)} , · · · , {Su|u ∈ N(v, i)})

where N(v, j) denotes the set of vertices whose minimum distance to v is j
(the jth-hop neighbours of v.) We say an edge-labeled graph G = (V,E, Σ) is
i-hop k-anonymous if for each node v ∈ V, there exist k − 1 other nodes with
the same i-hop fingerprint as v.

For this problem, as in the case of k-LS-SAP, we are given an edge
labeled graph G and a subset of vertices X . We need to add the smallest
number of edges to G to make X 1-hop k-anonymous. Similar to neighbour-
hood anonymity, we can reduce k-Table Graph Anonymization to 1-hop
k-anonymity.

Lemma 7 Given a table graph GT, X can be made k-label sequence anony-
mous by adding at most j edges if and only if it can be made 1-hop k-anonymous
by adding at most j edges.

Proof (If:) This direction of the proof is straightforward, because 1-hop anonymity
implies label sequence anonymity.
(Only if:) By Lemma 5, k-label sequence anonymizing X optimally will result
in the same set of adjacent vertices for every y ∈ Y , where Y is an equivalence
class of X . Since the set of adjacent vertices is the same, the 1-hop finger-
print of every vertex y ∈ Y is also the same. Therefore, 1-hop k-anonymity is
NP-hard.

5.4 k-Symmetry Anonymization

k-Symmetry was introduced by Wu et al. [22]. Under this notion of anonymity,
for each vertex v in the network, there exists at least k−1 other vertices which
can act as an image of v under some automorphism of the modified network.
To define the concept formally, we need the following definition:
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Definition 16 (Automorphism Equivalence) Two vertices u, v of a graph
G = (V,E) are said to be automorphically equivalent if there is an automor-
phism of G that maps u to v. Automorphism equivalence is an equivalence
relation on V and the partition of V induced by this equivalence relation is
called the automorphism partition of G, denoted by Orb(G).

k-Symmetry anonymity requires that all orbits have size at least k. For-
mally we have:

Definition 17 (k-Symmetry Anonymity) A graph G is k-symmetry anony-
mous if ∀∆ ∈ Orb(G), |∆| ≥ k.

For this problem, as in the case of k-LS-SAP, we are given an edge labeled
graph G and a subset of vertices X . We need to add the fewest number of
edges to G to make X k-symmetry anonymous. Again, we can reduce k-Table
Graph Anonymization to k-symmetry anonymity.

Lemma 8 Given a table graph GT, X can be made k-label sequence anony-
mous by adding at most j edges if and only if it can be made k-symmetry
anonymous by adding at most j edges.

Proof (If:) It is easy to see that k-symmetry anonymity implies k-label se-
quence anonymity.
(Only if:) For k-symmetry anonymity, it is required that if Y = {y1, y2, . . . , ym}
is an equivalence class of X , then there is an automorphism of the anonymized
graph that takes yi to yj for 1 ≤ i, j ≤ m. This is the case for a table graph
that is made k-label sequence anonymous in the optimal manner. Since, by
Lemma 5, two vertices in Y are adjacent to the same set of neighbours, the
mapping that maps yi to yj and vice versa and is the identity mapping on the
rest of the vertices is an automorphism. Therefore, k-symmetry anonymity is
NP-hard.

6 Bipartite Graphs

To recall, in the last section we demonstrated hardness for a series of k-
anonymization problems on general edge-labeled graphs. In this section, we
turn to the special case of bipartite graphs and establish that the hardness of
bipartite graphs depends on the fixed value of k and whether the edges are
labeled. This is an important result because bipartite graphs arise quite often
in social networks that are based upon two distinct groups of entities (e.g.,
films and viewers, patients and drugs, teachers and students).

6.1 Edge-labeled Bipartite Graphs

We start with the edge-labeled setting by restating k-LS-SAP for bipartite
graphs.
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Problem 6 (k-Label-Sequence-Based Bipartite Subset Anonymiza-
tion Problem (k-LS-BSAP)): Given a labeled bipartite graph
G = ((V,W),E, Σ) and X ⊆ V, find a bipartite graph G′ = ((V,W),E ∪
E′, Σ ∪Σ′) such that X is k-anonymous in G′ and |E′| is minimized.

6.1.1 An Algorithm for k-LS-BSAP with k = 2

We first show that the problem of finding an optimal 2-anonymization can be
reduced to the problem of finding a min-cost perfect matching in a hypergraph
containing edges of size 2 and 3. We then use a result shown by Anshelevich
and Karagiozava [3] in a manner similar to Blocki and Williams [5] in order
to conclude that there is a polynomial time algorithm for finding an optimal
2-anonymization. For simplicity, we will assume that X = V. The algorithm
we present below can be easily modified to work for any X ⊆ V.

As stated by Liu and Terzi [16], we can assume that in any 2-anonymization
of V every anonymous group is of size two or three (i.e., less than 2k = 4). We
construct a hypergraph H = (V,E), where E contains every possible subset
of V of size 2 and 3. We associate a cost c(e) with each edge e in H. For
any edge e, c(e) will be the number of new edges that need to be added to
make the vertices in e have the same label sequence so that they form an
anonymous group. Let Su denote the label sequence of a vertex u in V and for
convenience of notation let us treat the label sequences as multisets and use
multiset operations. Then,

c({u, v}) = |Su \ Sv|+ |Sv \ Su| , if |Su ∪ Sv| ≤ |V |;

c({u, v}) = ∞, otherwise;

c({u, v, w}) = |(Sv ∪ Sw) \ Su|+ |(Su ∪ Sw) \ Sv|

+ |(Su ∪ Sv) \ Sw| , if |Su ∪ Sv ∪ Sw| ≤ |V |;

c({u, v, w}) = ∞, otherwise.

In other words, the cost of creating an anonymous group of size two is the
symmetric difference of the two label sequences. For example, if a label l occurs
twice in a set Su and once in another set Sv, then one of the two occurrences
of the label l will be in Su \ Sv. The cost of anonymizing three vertices u, v
and w into one group is to add all the edges present in the union of two label
sequences but not in the third. The cost is infinite, however, if there are too
few vertices in V to anonymize u and v (and w) together.

Now, finding the optimal 2-anonymization reduces to finding a minimum-
cost perfect matching in the edge weighted hypergraph H constructed above.
A perfect matching in H is a set of edges such that every vertex in V is present
in exactly one of the edges.

We recall the result of Anshelevich and Karagiozava [3]:
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Given any hypergraph H with edges of size two and three
with an associated cost function d on the edges of H, there
is a polynomial time algorithm for finding a minimum-weight
perfect matching in H provided d satisfies the following sim-
plex condition: For any edge e = {u, v, w} in H the edges
{u, v}, {v, w}, {u,w} are also in H and

d{u, v}+ d{v, w}+ d{u,w} ≤ 2d{u, v, w}.

In order to use this result, we need the following, Lemma 9:

Lemma 9 The cost function c satisfies the simplex condition of Anshelevich
and Karagiozava [3]. That is,

c{u, v}+ c{v, w}+ c{u,w} ≤ 2c{u, v, w}.

Proof To show this, we will consider edge labels in three types of regions in
the Venn diagram for the three (multi)sets Su, Sv and Sw and show that their
contribution to the LHS of the equation is at most their contribution to the
RHS.

Regions of type 1 contain edge labels present in one of the three sets and
not the other two. These labels contribute 2 to the LHS and 4 to the RHS. For
example, suppose a label l is in Su but not in Sv and Sw. Then, it contributes
a cost of 1 to c{u, v} and c{u,w}. On the other hand, it contributes 2 to
c{u, v, w} and hence 4 to 2c{u, v, w}.

Regions of type 2 contain edges labels that are in two sets and not in the
third. These labels contribute 2 to the LHS and 2 to the RHS. For example,
suppose a label l is in Su and Sv but not in Sw. Then, it contributes a cost
of 1 to c{u,w} and c{v, w}. On the other hand, it contributes 1 to c{u, v, w}
and hence 2 to 2c{u, v, w}.

Regions of type 3 contain labels present in all the three sets. These labels
do not contribute to either side.

Therefore, we have Theorem 2:

Theorem 2 k-LS-BSAP is in P for k = 2.

6.1.2 A Hardness Result for k-LS-BSAP

In the previous subsection we demonstrated that k-LS-BSAP is tractable
when k = 2. In this subsection, on the other hand, we illustrate that for larger
k, Theorem 3 holds:

Theorem 3 k-LS-BSAP is NP-complete for k ≥ 3.

Proof We can build a reduction from the NP-hard table anonymization prob-
lem introduced in §3 to the decision version of k-LS-BSAP, and use similar
techniques as in §5. We can build the reduction from k-ENTRY-ANONYMITY
again and proceeds as follows:
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Entry A1 A2 A3

1 0 0 1
2 0 1 1
3 0 0 1
4 1 0 1
5 1 0 0
6 1 0 1

(a) Example Table T

(b) T as a bipartite graph GT

Fig. 4 Example of transforming a table T into a bipartite graph GT.

Reduction: Our reduction is described as follows:
Given a Table T, let T(m,j) ∈ {0, 1} denote the value of attribute j in

row m. Then, the edge-labeled bipartite graph GT corresponding to T is con-
structed as follows:

– VT = {r1, r2, . . . , rn}.
– WT = {cij |1 ≤ j ≤ l, i ∈ {0, 1}}.

– Let ET = {(rm, cij , 2(j − 1) + i)|T(m,j) = i} where 1 ≤ m ≤ n, 1 ≤ j ≤ l
and i ∈ {0, 1}.

– ΣT = {0, 1, . . . , 2l− 1}.
– L((rm, cij)) = 2(j − 1) + i for (rm, cij) ∈ ET.
– Finally, remove all isolated vertices from GT.

In other words, we encode a binary table as a bipartite graph in which a
row vertex rm ∈ VT is connected to a column vertex c0j ∈ WT (alt., c1j ∈ WT)
with label 2(j− 1) (2(j − 1)+ 1) if the (m, j)th entry of the table is 0 (1). See
Figure 4.

Let X = {r1, . . . , rn} denote the set of row vertices of GT. T can be k-
anonymized by suppressing at most t entries if and only if we can k-anonymize
X by adding at most t new labeled edges. The proof of this is immediate from
Lemmata 1, 2, and 4 which we used in the proof of hardness of k-LS-SAP.

We do remark that the decision version of k-LS-BSAP is in NP. The
certificate of membership is the same as in Theorem 1.

6.2 Unlabeled Bipartite Graphs

Here we explore the setting of unlabeled bipartite graphs, showing therein
that degree-based subset anonymization is in P by constructing a polynomial-
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time algorithm. This problem has also been studied in the setting of vertex
addition [8]. First, we restate k-D-SAP for the bipartite setting:

Problem 7 (k-Degree-Based Bipartite Subset Anonymization
Problem(k-D-BSAP)):Given an unlabeled bipartite graph G = ((V,W),E)
and X ⊆ V, find a graph G′ = ((V,W),E ∪ E′) such that, E′ ⊆ V ×W, X is
k-anonymous in G′ and the number of new edges added, |E′|, is minimized.

We note that in this setting X is only allowed to be a subset of V. This is
based on the understanding that for social networks represented as bipartite
graphs, each side of the bipartition represents one type of entity and we are
interested in anonymizing only one type. For example, in the Patient-Drug
example, we are only interesting in anonymizing subsets of patients, not drugs.

6.2.1 k-D-BSAP with k = 2

We begin by first noting that the technique used to produce an algorithm
for k-LS-BSAP with k = 2 in §6.1.1 can be simplified for k-D-BSAP to
demonstrate that k-D-BSAP is in P for k = 2, as well. This is not surprising,
since unlabeled graphs are a special case of labeled graphs where Σ = {∅}.
In this scenario, the new cost function is the difference in degrees. Recall that
d(u) denotes the degree of a vertex u.

c′({u, v}) = |d(u)− d(v)|.

c′({u, v, w}) = [max(d(u), d(v), d(w)) − d(u)]

+ [max(d(u), d(v), d(w)) − d(v)]

+ [max(d(u), d(v), d(w)) − d(w)].

Lemma 10 c′ satisfies the simplex condition.

Proof Without loss of generality, let d(u) > d(v) > d(w). Then, the LHS eval-
uates to d(u)−d(v)+d(v)−d(w)+d(u)−d(w) = 2(d(u)−d(w)). Furthermore,

RHS = 2[(d(u)− d(u) + d(u)− d(v) + d(u)− d(w)]

= 2[2d(u)− d(v) − d(w)]

> 2[2d(u)− d(u)− d(w)]

= 2[d(u)− d(w)]

Now, by using the result of Anshelevich and Karagiozava [3], we get that
2-anonymity for unlabeled bipartite graphs is in P.
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6.2.2 k-D-BSAP with k ≥ 2

Our main result in this section subsumes the previous case of §6.2.1. We show
that there is an efficient algorithm for this problem using the techniques of
Liu and Terzi [16], ∀k ≥ 2. For simplicity, we will assume that X = V. Our
algorithm can be easily modified to work for any X ⊆ V. Let |V| = n and let
d = (d1, d2, . . . , dn) be the degree sequence of the vertices of V. We start with
the preprocessing step of sorting the degree sequence d in O(n logn) time. The
algorithm proceeds in two main steps:

– Degree Anonymization: Given d, the algorithm outputs the sequence
d′ = (d′1, d

′
2, . . . , d

′
n) satisfying d′i ≥ di such that Σi(d

′
i − di) is minimized

and d′ is k-anonymous.
– Graph Construction: The algorithm constructs the graph G′ in which

the degree of the vertex ui is d
′
i. In other words, V is k-anonymous in G′.

Degree Anonymization
We start with the following proposition which can be easily verified by noting
that any anonymous group of more than 2k elements can be split into two
disjoint anonymous groups, each of size at least k, such that the cost of the
disjoint groups is less or equal to that of the singleton.

Proposition 1 Without loss of generality, every anonymous group in d′ is of
size less than 2k.

Given a sorted degree sequence d, let DA(d[1, i]) denote the cost of k-
anonymizing the subsequence d[1, i]. Also, let C(d[i, j]) be the cost of including
the vertices {ui, ui+1, . . . , uj} in one anonymous group. Clearly,

C(d[i, j]) = Σj
l=i(d(i) − d(j)).

Using the proposition above, we get the following dynamic programming
equations to compute d′. In particular, for i < 2k:

DA(d[1, i]) = C(d[1, i]),

while for i ≥ 2k,

DA(d[1, i]) = min
j≤t≤i−k

(DA(d[1, t]) + C(d[t+ 1, i])),

where j = max{k, i− 2k + 1}.
The first equation uses the fact that if i < 2k, it is not possible to have more

than one anonymous group. Therefore, the optimal cost of creating a single
group involves making all the degrees equal to d(1). The second equation
says that if i > 2k, the degree anonymization cost consists of the degree
anonymization cost of the subsequence d[1, t] and the optimal cost of putting
the vertices t + 1, . . . , i into a single group. Moreover, this group has to be
of size less than 2k. The running time of this dynamic programming step is
O(nk).

Graph Construction
We observe the following property of d′.
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Lemma 11 Let dmax be the maximum degree of a vertex in V in the graph
G. Then d′(i) < dmax for all i.

Proof Suppose not for the sake of contradiction. Then, there is an anonymous
group of d′ in which all values are equal and greater than dmax. Replacing
every entry by dmax will help produce a k-anonymous sequence with a lower
degree anonymization cost.

Therefore, once we obtain the k-anonymous degree sequence d′ from the
previous step, the algorithm adds for each vertex ui ∈ V, d′(ui) − d(ui) new
edges from ui to (arbitrary) vertices in W.

The running time of this step is O(ndmax) where dmax is the maximum
degree of a vertex in V.

In summary, we get the following theorem:

Theorem 4 k-D-BSAP ∈ P, for k ≥ 2. In particular, there is an algorithm
with running time O(n(k + dmax) + n logn) that solves this problem.

7 A Hardness Result for Attribute Disclosure

Throughout this paper, we have investigated labeled graphs, so it is natural
that we should consider attribute disclosure attacks. While relatively novel in
terms of graph anonymization, the problem is well studied within the table pri-
vacy community. We begin this section by motivating the need for protection
against attribute disclosure attacks, prompting our definition of t-closeness
for graphs, a natural analog of the measure by the same name within table
privacy. We then give a hardness result for the problem.

7.1 Why t-closeness?

Example 4 Consider the example in Figure 5. The second graph (Figure 5(b))
is an example of an optimal 2-degree-anonymization of the shaded subset of the
first graph (Figure 5(a)), but demonstrates the limitation of mere structural
anonymization. Note that if the adversary knows the degree of a shaded target
v in the anonymized graph he indeed cannot be certain which vertex corre-
sponds to v with probability greater than .5, but he still absolutely knows the
label of v: every shaded vertex in the anonymous graph with the same degree
also has the same label.

To protect a sensitive label of a vertex, then, it is not enough to just conceal
the identity of the vertex. It is also necessary to ensure that knowledge of an
equivalence class (i.e., the assumed adversarial knowledge) is not sufficient to
infer much new knowledge about the labels of vertices within that equivalence
class. This is our motivation behind defining an attribute disclosure attack
(Definition 11).

Consider now the third graph (Figure 5(c)) which is also an optimal 2-
degree anonymization of the shaded subset of the first graph. In this case,
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(a) A vertex-labeled graph G and
a shaded subset of vertices of in-
terest, X

(b) A 2-degree anonymous vertex-
labeled graph G′ in which the
knowledge of an equivalence class
of a vertex v ∈ X yields full dis-
closure of the label of v

(c) A 0-close, 2-degree anonymous
vertex-labeled graph G′′ for which
even knowledge of the equivalence
class of v ∈ X offers no new infor-
mation about the label of v

Fig. 5 An example of the susceptibility of k-anonymous graphs to attribute disclosure
attacks and how t-closeness addresses that susceptibility

however, both equivalence classes have equal ‘a’ and ‘b’ labels, just as in the
overall graph. Thus, if the adversary can identify the equivalence class of his
target vertex, he still cannot infer new knowledge about the sensitive label. In
this case, the anonymization procedure has achieved 0-closeness (Definition 12)
because the distance between distributions of labels in the original graph and
each equivalence class is upper bounded by 0.

7.2 A Hardness Result for t-closeness

Here, we present a hardness result for t-closeness conjoined with k-LS-SAP.
We start by describing the problem we study precisely: Given a vertex-labeled
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graph G = (V,E, Σ, ℓ) and parameters m and t, is it possible to convert G
into a graph G′ = (V,E ∪ E′, Σ, ℓ) such that G′ is t-close and |E′| ≤ m? We
show here that this problem is NP-complete.

To do so, we begin by defining a new anonymization problem, called k-
VLS-AP:

Problem 8 (k-Vertex-Labeled Sequence Anonymization Problem
(k-VLS-AP)):Given a vertex-labeled graph G = (V,E, Σ, ℓ), can G be con-
verted to a graph G′ = (V,E ∪ E′, Σ, ℓ) that is k-label-sequence anonymous
such that |E′| ≤ m?

Lemma 12 k-VLS-AP is NP-complete for k ≥ 3.

Proof This result follows by looking into the proof of Theorem 1 of Zhou and
Pei [25]. Our main observation is that though Theorem 1 [25] shows a hardness
result for the notion of neighbourhood anonymity in vertex-labeled graphs, it
is easily seen from the proof details that, in fact, it shows the hardness of label
sequence anonymity in vertex-labeled graphs under edge additions.

NP-hardness for k-VLS-AP helps us show the hardness of t-closeness using
ideas similar to Theorem 2 from the same work of Zhou and Pei [25].

Theorem 5 t-Closeness is NP-complete if the equivalence classes are required
to be k-vertex label sequence anonymous for k ≥ 3.

Proof We reduce the k-VLS-AP problem to t-closeness in social networks.
Suppose that for a given vertex labeled graph G, we want to check if it can be
made k label sequence anonymous by adding at most m edges. We construct a
new vertex-labeled G′ by assigning to each vertex in G a new unique sensitive
label. That is, every vertex will now have a tuple (l1, l2) as its label. Here, l1 is
the old label present in G and l2 is the new sensitive label we have introduced.
Now we can check that G can be converted into a k label sequence anonymous
graph G1 such that |E(G1) − E(G)| ≤ m if and only if G′ can be converted
into a t-close graph G2 such that |E(G2) − E(G′)| ≤ m and t = 2

(

1− k
n

)

.
Here, t is the distance between the two probability distributions ( 1

n
, . . . , 1

n
)

and ( 1
k
, . . . , 1

k
, 0, . . .).

The other direction of the proof follows trivially from the fact that t-
closeness with t = 2

(

1− k
n

)

implies vertex label sequence anonymization be-
cause the latter is a prerequisite condition of the former.

8 Conclusion

Data privacy is of paramount importance, especially while social networks in-
definitely grow in user base, data collection, and analysis opportunity. In this
paper, we have initiated a systematic study of the hardness of providing this
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privacy when graph data is to be released to third parties. We have made a se-
ries of contributions: establishing a framework for proving hardness of k-SAP
problems, defining t-closeness to better protect against attribute disclosure
attacks on vertex-labeled graphs, and ascertaining the following complexity
results:

– For general, edge-labeled graphs, label sequence subset anonymization–
and thus table graph anonymization, k-neighbourhood anonymity, i-hop
anonymity, and k-symmetry–are NP-complete for k ≥ 3;

– For bipartite, edge-labeled graphs, label sequence subset anonymization is
in P for k = 2 and is NP-complete for k ≥ 3;

– For bipartite, unlabeled graphs, degree-based subset anonymization is in
P for all values of k;

– And for general, vertex-labeled graphs, we show that vertex label sequence-
based anonymization and consequently t-closeness is NP-complete.

In addition to these results, we have also implicitly contributed the identifi-
cation of several open problems related to graph anonymization. In particular,
it is still unknown whether:

– There is a polynomial time algorithm for label sequence subset anonymiza-
tion when k = 2;

– Effective approximation algorithms exist for any of these hard problems;
or

– t-Closeness is NP-complete when conjoined with preventitive measures of
identity disclosure other than vertex label sequence anonymization.
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