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ABSTRACT
The skyline operator returns records in a dataset that pro-
vide optimal trade-offs of multiple dimensions. It is an ex-
pensive operator whose query performance can greatly bene-
fit from materialization. However, a skyline can be executed
over any subspace of dimensions, and the materialization of
all subspace skylines, called the skycube, dramatically mul-
tiplies data size. Existing methods for skycube compression
sacrifice too much query performance; so, we present a novel
hashing- and bitstring-based compressed data structure that
supports orders of magnitude faster query performance.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query process-
ing

Keywords
skycube, compression, hashmap, data structure

1. INTRODUCTION
The skyline operator [1] selects from a database all tu-

ples that are not clearly less interesting than any others.
For example, Table 1 lists some top movies from IMDB.
Whether one is interested in movies that are newer, higher-
rated, or higher-grossing, or any combination of these at-
tributes, Titanic is still less interesting than Avatar: the
latter has higher values on every attribute than the former.
By contrast, The Shawshank Redemption is older and lower-
grossing than Avatar, but still interesting for its high rating.

The skyline includes all data points that are strictly higher
on at least one attribute or equal on every attribute, when
compared to all other points (like The Shawshank Redemp-
tion but not Titanic). These are the most interesting points.

Subspace skylines Often, it is advantageous for a user to
pose a skyline query on only the few attributes that are rel-
evant to him/her: a typical moviegoer is unconcerned with
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Movie Title Year Rating Sales (×106)
Avatar 2009 7.9 2784 USD
The Avengers 2012 8.2 1514 USD
The Godfather 1972 9.2 245 USD
The Shawshank Redemption 1994 9.2 59 USD
Skyfall 2012 7.8 1108 USD
Titanic 1997 7.6 2186 USD

Table 1: Some top movies, courtesy IMDB.com.

a movie’s sales figures, so is better served by the skyline on
just the year and rating attributes. On the other hand, a
studio accountant may have a very different perspective.

A subspace skyline query [6,9,10] returns the skyline com-
puted over a subset of attributes specified by the user, per-
sonalizing the result. However, it is nearly as expensive to
compute skylines in arbitrary subspaces as the full dimen-
sionality, a cost amplified when users pose a series of queries
in different subspaces (such as in exploratory scenarios [2]).

Skycube To offer the best possible response time for a
subspace skyline query, one solution is to precompute the
answer. To do so for every possible subspace skyline is to
construct the skycube [6,11], a set of 2d−1 subspace skylines.
However, storage of the skycube is quite large. Although
compressed skycube data structures exist [8,10], query per-
formance on the state-of-the-art structure is inadequate.

Therefore, we introduce Hashcube to compress a skycube
with bitstrings and hash maps. It achieves an order of mag-
nitude compression over the default structure, while provid-
ing query performance 1000× faster than state-of-the-art.

2. BACKGROUND AND RELATED WORK
We assume a table P of n records, each described by d

ordinal attributes. We denote the i’th record by pi and
the j’th attribute of pi by pi[j]. Our approach is based on
bitstrings (fixed-length sequences of binary values).1 We de-
note the j’th bit of a bitstring Bi by Bi[j] and the substring
of Bi from bit j to k, inclusive, by Bi[j, k]. Additionally, a
subspace s is represented by a bitstring of length d, where
s[i] = 1 iff the subspace includes the i’th dimension.

In this paper, we propose a compact data structure to
rapidly answer skyline queries [1] over arbitrary subsets of
attributes, which relies on a notion called dominance [1]:

Definition 1 (subspace dominance (p, q, s)). Given points
p, q ∈ P and a bitstring s of length d, let EQ,GT also be

1Bitstrings and integers here mean both an integer value
and the bitstring representing that value (e.g., 7 and 1110).

IMDB.com


DOMi

id Movie Title binary integer
0 Avatar 1110 000 7 0
1 The Avengers 0101 000 10 0
2 The Godfather 1011 100 13 1
3 The Shawshank Redemption 1001 110 9 3
4 Skyfall 0111 111 14 7

Table 2: Table 1 movies and their domspaces vector (using
subspace order 〈Y,R,YR,S,YS,RS,YRS〉 and big-endian).

bitstrings of length d, where:

EQ[i] = 1 iff p[i] = q[i]

GT[i] = 1 iff p[i] > q[i].

Then, p dominates q in subspace s, denoted p �s q, iff:

((EQ & s) 6= s) ∧ (((EQ | GT) & s) = s) .

If all data values are unique, known as Distinct Value Con-
dition [7], EQ fades from Definition 1. A subspace skyline [6]
is the subset of points not dominated in the subspace:

Definition 2 (subspace skyline (P, s)). Given a set of records
P and a bitstring s of length d, the subspace skyline of P is:

SKY(P, s) = {pi ∈ P : @pj ∈ P, pj �s pi}.

If s = 2d − 1, Definition 2 produces the full skyline. The
skycube [6, 11] is the set of subspace skylines (each called a
cuboid [11]) for all non-zero bitstrings of length d.

Finally, we define for our data structure a mapping be-
tween points and subspace skylines (examples in Table 2):

Definition 3 (domspaces vector of pi). Point pi’s domspaces
vector, denoted DOMi, is a bitstring of length 2d− 1 where:

DOMi[j] = 1 iff p[i] 6∈ SKY(P, j).

In other words, a domspaces vector records the subspaces
in which point pi is dominated (not in the skyline).

The objective in this paper is to store a compact rep-
resentation of all cuboids that can support more efficient
subspace skyline queries than state-of-the-art algorithms.

Skycube algorithms Börzsönyi et al. [1] introduced the
skyline with (external-memory) algorithms block-nested-loops
(BNL) and divide-and-conquer (DC). Sort-First Skyline (SFS)
[3] improves BNL, pre-sorting the data so points will first be
compared to those more likely to dominate them. Object-
based Space Partitioning (OSP) [12] improves DC by recur-
sively partitioning points based on existing skyline points,
rather than a grid. BSkyTree [4] improves OSP by optimally
choosing the points with which to partition P .

The skycube was introduced independently by Yuan et
al. [11] and Pei et al. [6], with adaptations of the DC [1]
and SFS [3] skyline algorithms, respectively. More recently,
QSkyCube [5] adapted the BSkyTree algorithm [4]. These
algorithms compute cuboids one-by-one, using the corre-
sponding skyline algorithm. Based on results reported in
[4, 5], BSkyTree and QSkyCube are state-of-the-art.

Skycube data structures The default skycube data struc-
ture is the lattice, used in QSkyCube [5]. It is an array of
2d − 1 vectors, and the i’th vector contains all points in the
i’th cuboid. Naturally, this has optimal performance: one
retrieves the proper vector from the array and then reports
all points lying therein. However, it is maximal in terms of

Figure 1: The Hashcube, built from Table 2 with |wi| = 4.

space: each point is duplicated for every cuboid it is in, 1
2

2d

times for points with maximal values on some attribute.
Two smaller data structures have been proposed. The

closed skycube [8] defines equivalence classes over subspaces
and avoids duplicating points within an equivalence class.

The more recent compressed skycube [10] defines minimal
subspaces skyline points and constructs a bipartite member-
ship graph between points and minimum subspaces. Thus a
point is not duplicated for any subspaces between its mini-
mal subspaces and the full skyline. In the absence of Distinct
Value Condition, it introduces overhead to rederive any par-
ticular cuboid, because false positives must be verified with
dominance tests in all subspaces of the query subspace.

3. THE Hashcube DATA STRUCTURE
Here, we introduce the Hashcube, obtaining up to |w|-

fold compression (for |w|, the number of bits in each logical
word) and state-of-the-art query performance.

3.1 Layout of the Hashcube
We illustrate a Hashcube in Figure 1, using the data from

Tables 1 and 2. The high-level idea is to split the domspaces
vectors for each point into words of length |w| (4 in examples,
32 in experiments), and to index the points by their resultant
substrings using hash maps. Since the domspaces vector has
length 2d, each point will be indexed ≤ 2d−lg|w| times. The
substrings are the keys for the hash maps. More precisely, if
Σ = {0, 1}|w| \{1}|w| denotes the set of length |w| bitstrings

containing at least one zero, and k = max(1, 2d−lg|w|):

Definition 4 (Hashcube (P )). A Hashcube on P is a set of k
hash maps, h0, . . . , hk−1, each mapping from valid bitstrings
in Σ to subsets of P , hj : Σ→ P(P ), where:

pi ∈ hj(B) iff DOMi[|w|j, |w|(j + 1)− 1] = B.

That is, each hash map corresponds to a group of |w|
cuboids. Points are binned according to the combination of
those cuboids in which they appear. For example, in Fig-
ure 1, w1 corresponds to subspaces {Year,Sales}, {Year, Rat-
ing}, and {Year,Rating,Sales}, respectively. Both Avatar
and The Avengers are binned to 0, since they appear in all
three cuboids. Although The Godfather appears in the last
two cuboids, it does not appear in {Year,Sales}: it has a dif-
ferent combination, namely 1, and maps to that bin instead.

Compression for a Hashcube depends on the number of
clear bits in the substring of a domspaces vector, up to |w|.
Note, first, that a point is only ever indexed by a hash map
if it has a zero bit, i.e., if it appears it at least one of the



Algorithm 1 Querying the Hashcube

Input: Hashcube; query subspace, B; word length, |w|
Output: The skyline of subspace B

1: Let j = B/|w|
2: Let mask = (1� (B%|w|))
3: for all active hash keys ki of hj do
4: if (ki & mask) == 0 then
5: Output all pid in hj(ki)

corresponding |w| cuboids. If so, it must also be indexed
for that cuboid by the lattice. Conversely, a point is only
indexed once by each hash map, no matter how many of the
|w| cuboids in which it appears; the lattice may index the
point |w| times. Further compression comes by not storing
unused hash keys and by points mapping to identical bins.

3.2 Querying the Hashcube
Notice from Definition 3 that the j’th cuboid consists of

all points pi for which DOMi[j] = 0. So, for the Hashcube,
the query operation is to concatenate all vectors of point ids
for which that bit is not set. Because Definition 4 treats
each group of |w| bits/cuboids independently of the rest,

the query can be resolved with just one of the 2d−lg|w| hash
maps. Algorithm 1 describes the query operation: first the
relevant hash map is determined, and then all ≤ 2|w| active
hash keys for that hash map are iterated. For those that
have the relevant bit clear, the entire vector of point ids is
output. No point will be output twice, because each point id
is stored at most once per hash map. The iteration of active
hash keys is the primary source of overhead relative to the
lattice, a cost of at most 2 ∗ 2|w| binary/logical operations.2

The cost of querying the data structure is also very low.
Lines 1 − 2 require constant computations. We then read
up to 2|w| active hash keys, perform two operations, and
(possibly) output some unique point ids (if the condition on
Line 4 evaluates true). So, if there are m point ids to output,

then the cost of querying the Hashcube is O(2|w| +m).

4. EXPERIMENTAL EVALUATION
We compare Hashcube (|w| = 32) to the compressed sky-

cube (CSC) [10], the lattice, and computation from scratch
using the BSkyTree [4] skyline algorithm. (Note that larger
|w| improves compression; smaller |w| improves query time.)
We implement (code available3) the data structures and
query algorithms in C++.4 The lattice is built as an array
of vectors of point ids. CSC is strongly implemented, evi-
denced by the faster performance than reported in [10] (al-
beit on newer hardware). The implementation of BSkyTree
was provided by the authors, but adapted to handle sub-
space queries. We use an Intel Core i7-2700 machine with
four 3.4 GHz cores and 16 GB of memory, running Linux
(kernel version 3.5.0).

We evaluate the data structures in terms of space and
query time. We measure space by counting 32-bit point ids
and hash keys used, a more robust measure than physical
disk space because of external libraries (e.g., std::map).

2The Hashcube also requires outputting up to 2|w|−1 sepa-
rate lists, rather than one, long contiguous one.
3source at: http://cs.au.dk/research/research-areas/
data-intensive-systems/.
4compiled using g++ (4.7.2) with the -O3 optimization flag

We measure query time by dividing the total time to se-
quentially query every subspace by 2d−1. In contrast to uni-
formly sampling subspaces with replacement as in [10], this
better estimates expected performance: the worst cases ((d-
1)-dimensional subspaces) are otherwise unlikely included.
Output to an array in memory, but not init time, is included.

We evaluate how the structures scale with respect to both
d and |P | on anti/correlated distributions, generated as in [1].
We adopt default values, d = 12 and |P | = 500K from [4].

Experiment Results Overall, CSC achieves the most
compression. Figure 2 shows that all data structures scale
well with |P | in terms of size, since the size of each cuboid
grows sub-linearly with |P |. That the CSC has a worse com-
pression rate on anti-correlated data is intuitive, because the
minimum subspaces for each point are larger. In Figure 3,
see that CSC’s compression relative to the lattice increases
with d, because there are longer paths between minimum
subspaces and the full skyline. Hashcube is generally closer
to CSC than to the lattice. Relative to the lattice, it obtains
≈ 10× compression and permits storing in the same amount
of space 2–4 more dimensions (4–16× more cuboids).

The same trends exist for physical space (not shown).
We use standard libraries, rather than more space-efficient,
custom-built containers. Still, for d = 12 and |P | = 500K,
HashCube achieves a compression ratio (in bytes) of 7.9×
(compared to 13.8×). The same ratios apply for CSC.

Figures 4 and 5 report average query performance. The
Hashcube performs very strongly, closely following the op-
timal performance of the lattice, typically 1000 − 10000×
faster than CSC. The iteration of all hash keys only takes
5− 10× as long as the direct lookup in the lattice. Further,
on anticorrelated data, Hashcube converges towards the lat-
tice with increasing |P | (Figure 4). By contrast, CSC is
rather slow, beaten in most instances by simply computing
the skyline from scratch with BSkyTree. CSC outperforms
BSkyTree only on small, correlated instances of < 200µs.

The poor query performance of CSC results from dom-
inance tests required to reconstruct each cuboid. As d in-
creases, exponentially more subspaces of a query space must
be examined for false positives. With respect to |P |, trends
match the size plots. The correlation is expected: for each
subspace, the number of dominance tests is quadratic in the
number of points for which that is the minimum subspace.
It should also be noted that the variance of query times for
HashCube is small, i.e., never exceeds 1ms, while CSC typ-
ically spends minutes on high-dimensional queries. This is
a result of the split into several bitstrings of size |w|, which
limits the number of hash keys for each query, while CSC
needs to iterate the data points in all subspaces of the chosen
dimensions and needs to perform dominance checks.

Hashcube is efficient to query, typically 1000 − 10000×
faster than CSC and computing from scratch with BSkyTree.
The iteration of all hash keys only slows Hashcube 5 −
10× relative to the lattice. Further, on anticorrelated data,
Hashcube converges towards the lattice with increasing |P |.
The cost of outputting longer contiguous vectors is neglible;
so, the increased input size only slows the data structure if
new points associate with as-yet-unused hash keys. With re-
spect to d, the curve follows that of the lattice quite closely.

We call particular attention to Figure 5, because it ex-
presses very well the balance that Hashcube obtains. We
are unable to finish the plot for both the lattice and CSC,
but for opposite reasons. The lattice does not fit in 16 GB

http://cs.au.dk/research/research-areas/data-intensive-systems/
http://cs.au.dk/research/research-areas/data-intensive-systems/
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Figure 2: Size of the data structures w.r.t. to n (d=12).
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Figure 3: Size of the data structures w.r.t. to d (n=500K).
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Figure 4: Data structure query time w.r.t. to n (d=12).
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Figure 5: Data structure query time w.r.t. to d (n=500K).

of memory; so, we cannot query it fairly. On the other hand,
CSC achieves good compression, but has prohibitive query
time (> 48 hrs total). Hashcube is very efficient in both re-
spects and supports this 16-dimensional, anticorrelated case.
It compresses well and still, across all tested combinations
of |P | and d, can be queried on average in less than 200µs.

5. CONCLUSION AND OUTLOOK
We introduced a compressed skycube based on bitstrings,

the Hashcube. Relative to the lattice, it achieves ≈10× com-
pression. Relative to the state-of-the-art compressed sky-
cube, queries are ≈1000× faster. Further, we showed that,
while the compressed skycube is updatable, it is outper-
formed by skyline computation from scratch. Thus, updat-
ing skycubes is still a challenging open problem. For future
work, we believe equivalence class ideas from [8] and/or more
sophisticated cuboid grouping choices can be integrated into
the Hashcube to further improve compression. Small, aux-
illiary structures may help handle some update types.
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