
Group-Aware Weighted Bipartite B-Matching

Cheng Chen
University of Victoria, Canada

cchenv@uvic.ca

Sean Chester
NTNU, Norway

sean.chester@idi.ntnu.no
Venkatesh Srinivasan

University of Victoria, Canada
srinivas@uvic.ca

Kui Wu
University of Victoria, Canada

wkui@uvic.ca

Alex Thomo
University of Victoria, Canada

thomo@uvic.ca

ABSTRACT
The weighted bipartite B-matching (WBM) problem models
a host of data management applications, ranging from rec-
ommender systems to Internet advertising and e-commerce.
Many of these applications, however, demand versatile as-
signment constraints, which WBM is weak at modelling.

In this paper, we investigate powerful generalisations of
WBM. We first show that a recent proposal for conflict-
aware WBM by Chen et al. is hard to approximate by re-
ducing their problem from Maximum Weight Independent
Set. We then propose two related problems, collectively
called group-aware WBM. For the first problem, which con-
strains the degree of groups of vertices, we show that a linear
programming formulation produces a Totally Unimodular
(TU) matrix and is thus polynomial-time solvable. Nonethe-
less, we also give a simple greedy algorithm subject to a
2-extendible system that scales to higher workloads. For the
second problem, which instead limits the budget of groups of
vertices, we prove its NP-hardness but again give a greedy
algorithm with an approximation guarantee. Our experi-
mental evaluation reveals that the greedy algorithms vastly
outperform their theoretical guarantees and scale to bipar-
tite graphs with more than eleven million edges.

CCS Concepts
•Mathematics of computing → Graph algorithms;
Approximation algorithms; •Information systems →
Web searching and information discovery;

Keywords
Bipartite Graphs, Matchings, NP-hardness, Linear Program-
ming, Submodular Systems

1. INTRODUCTION
The weighted bipartite B-matching problem (WBM) is a

classic optimisation problem that is ubiquitous in data man-
agement and e-commerce applications. Figure 1 illustrates

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM ’16 October 24–28, 2016, Indianapolis, IN, USA
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

0.5

0.4

0.1

0.3

0.7

0.2

u1(1)

u2(2)

u3(2)

v1(1)

v2(1)

v3(1)

v4(1)

score(H) = 1.6

Figure 1: The WBM problem. The input graph has score
2.2, the sum of all its edge weights. The blue edges of the
solution H yield the highest score, 1.6, of all subgraphs sat-
isfying the red degree constraints.

the problem: the input is an edge-weighted, undirected, bi-
partite graph G = ((U, V), E,W) and a maximum degree
constraint (in red) for each vertex. The WBM problem seeks
to match vertices in U to vertices in V so that each vertex
is matched with no more vertices than its degree constraint
allows. Equivalently stated, we want to compute a subgraph
H of G with the maximum sum of edge weights where no
degree constraint is violated. The solution to the given ex-
ample is subgraph H with edges given in blue and score 1.6.

When U represents a set of users and V represents a set
of items (e.g. webpages, movies, books, etc), WBM expres-
sively models a broad range of data management problems.

For example, if the items are webpages, and (a) the edge
weights are expected advertising revenue, (b) users in U have
degree constraint 3, and (c) webpages in V have degree con-
straint |U |, then WBM solves the problem of selecting three
internet advertisements for every user.

Or, if the items are movies, and (a) the edge weights are
predicted ratings, (b) users in U have degree constraint 10,
and (c) movies in V have degree constraint |U |, then WBM
makes the 10 best movie recommendations for every user.

A problem with WBM is that it cannot model diversity
constraints on the items matched to users. For example, we
cannot specify that no more than 5 history movies should
be matched to every user. Diversity is a critical consid-
eration for most applications of WBM, from recommender
systems [14] to web document ranking [32] to online shop-
ping [36]. In particular, WBM cannot capture diversity
across topics and genres [38], groups of redundant customers,
such as households, nor temporal ranges [22].

Recently, Chen et al. [10] introduced a generalisation of

10.475/123_4

WBM to increase the expressiveness of its diversity require-
ment: conflict-aware WBM (CA-WBM), adds conflict edges
among vertices of V 1 and requires that the solution H con-
tains fewer than τ(u) conflicts for any vertex u ∈ U . Conflict
edges can be added between similar products (e.g., highly
similar movies) to ensure that products are diversified for
any given user. (CA-WBM is illustrated in Figure 2b.)

This generalisation vastly expands the expressiveness of
WBM, but it has two notable shortcomings. Firstly, while
WBM can be solved efficiently in polynomial time with the
Hungarian Algorithm [21], CA-WBM is instead NP-hard [10].
In fact, our first contribution in this paper is a new hardness
result (Section 3) for CA-WBM, reducing from the Maxi-
mum Weight Independent Set problem, which proves that
it is hard even to approximate CA-WBM. Secondly, adding
conflict edges between pairs of vertices is often unnecessarily
general, because in many applications the conflicts are tran-
sitive within groups (e.g., households, genres, topics, tempo-
ral ranges), i.e., the conflicts arrange in cliques.

Motivated by the intractability, even inapproximability,
of CA-WBM, but the need for more expressive models than
WBM, and the organisation of conflicts into disjoint groups,
we introduce a novel generalisation of WBM: group-aware
WBM (GA-WBM). We study two variants of the problem:
the first generalises the WBM constraints by constraining
the degree for each group (Section 4); the other generalises
the WBM optimisation function by imposing a ceiling on the
budget/payoff for each group (Section 5). The former cap-
tures scenarios when one wishes to limit the overall number
of products from one group matched to a user, e.g., no more
than three news articles on a single topic; the latter cap-
tures scenarios when one wishes to limit the overall weight
of products matched to a user, e.g., no more than $100 is to
be spent on online advertising for keywords of a category.

For the degree constraint variant, we present an exact, lin-
ear programming algorithm, proving that the problem vari-
ant is in P, and a scalable, greedy algorithm with approxi-
mation guarantees. For the budgetted variant, we prove NP-
hardness, but again give a greedy algorithm with a constant-
factor approximation guarantee, precisely what we prove
cannot be done for CA-WBM. As such, group-aware weighted
bipartite B-matching can model a broader range of problems
than WBM while still admitting efficient algorithms with
good performance guarantees.

In all, this paper makes the following four contributions:

• We prove that the CA-WBM problem [10] is hard to
approximate by reducing from Maximum Weight In-
dependent Set (Section 3);

• We introduce group-awareWBM subject to degree con-
straints (GA-WBM-D), together with a polynomial-
time, exact linear programming algorithm and a scal-
able, 2-approximate greedy algorithm (Section 4);

• We introduce group-aware WBM subject to budget
ceilings (GA-WBM-B) and prove it is NP-hard. We
give a greedy algorithm using a k-extendible system
to guarantee 3-approximate solutions (Section 5); and

• We conduct an extensive experimental evaluation on
e-commerce data showing that the linear programs and

1We assume (WLOG) that all conflicts and partitions occur
on vertex set V , but they could occur on U , instead, to
model diversification across user groups (e.g., households).

0.5

0.4

0.1

0.3

0.7

0.2

u1(1)

u2(2)

u3(2)

v1(1)

v2(1)

v3(1)

v4(1)

score(HWBM) = 1.6

(a) HWBM: the WBM solu-
tion shown in Figure 1

0.5

0.4

0.1

0.3

0.7

0.2

u1(1)

u2(2)

u3(2)

v1(1)

v2(1)

v3(1)

v4(1)

score(HCA-WBM) = 1.5

(b) HCA-WBM: the top score
avoiding conflict edge (v2, v4)

Figure 2: The CA-WBM problem contrasted with WBM.
Two conflicts, (v2, v3), (v2, v4), are introduced, e.g., because
the products are too similar. If u3 has a conflict threshold
τ(u3) = 0, then it cannot match both v2 and v4, leading to
a lower score, but potentially more diverse, solution.

the greedy algorithms return excellent results on small
inputs, and the greedy algorithms scale to bipartite
graphs with over eleven million edges (Section 6).

2. DEFINITIONS AND PRELIMINARIES
Throughout this paper, we assume that any graph G =

((U, V), E,W) is edge-weighted, undirected, and bipartite.
In other words, U and V are disjoint sets of vertices and the
edge set E ⊆ U × V contains only edges between vertices
in U and vertices in V . The edge-labelling function W :
E → R+ assigns a positive, real-valued weight to every edge.
The problems in this paper define a scoring function and
constraints and find a subgraph H = ((U, V), E′,W) that
maximises the score while satisfying the constraints.

2.1 Bipartite B-matchings
We review here two known B-matching problems. WBM

maximises the sum of edge weights under the condition that
each vertex must satisfy a degree bound assigned by a vertex-
labelling function, B:

Weighted Bipartite B-Matching (WBM)
Given G and vertex-labelling function B : U

⋃
V → N, find a

subgraph H = ((U, V), E′,W) maximising
∑

e∈E′ W (e) with
every vertex u ∈ U

⋃
V adjacent to at most B(u) edges.

Figure 1 (WBM) is repeated in Figure 2a for ease of com-
parison. The matching excludes the high-weight (u1, v1)
edge, because u1 and v1 are permitted only one edge and
{(u1, v3), (u2, v1)} produces a higher overall score.

CA-WBM imposes a set of conflict pairs C, requiring that
each u ∈ U is adjacent to at most τ(u) of those pairs:

Conflict-Aware
Weighted Bipartite B-Matching (CA-WBM) [10]
Given G, vertex-labelling functions B : U

⋃
V → N, τ :

U → N, and a set of unordered pairs C ⊆ V × V , find the
subgraph H = ((U, V), E′,W) maximising

∑
e∈E′ W (e) with

every vertex u ∈ U
⋃

V adjacent to at most B(u) edges and
every vertex u ∈ U adjacent to at most τ(u) pairs of vertices
v, v′ ∈ V that appear as an unordered pair (v, v′) ∈ C.

Figure 2b illustrates CA-WBM. The conflict pairs (v2, v3)
and (v2, v4) are marked by red arcs and the threshold func-
tion is: τ(u) = 0,∀u ∈ U . Relative to WBM, the conflicts
restrict the space of feasible solutions; e.g., the subgraph in
Figure 2a would not solve the CA-WBM instance, because
u3 is matched to both vertices of the conflict pair (v2, v4).

2.2 k-Extendible systems
We use the notion of k-extendible systems to prove ap-

proximation guarantees for our greedy algorithms in Sec-
tions 4.3 and 5.3. Moreover, we will deal with objective
functions that are linear/monotone submodular and need to
be maximised. We review here what it means for a func-
tion to be monotone submodular and what is a k-extendible
system constraint. Submodular set functions are used to
capture a natural diminishing returns property:

Definition 1 (monotone submodular function).
Let U be a finite set of elements. A positive set function
f : 2U → R+ is monotone if for any two sets A ⊆ B ⊆ U ,
we have that f(A) ≤ f(B). Set function f is submodular if
for every A,B ⊆ U with A ⊆ B and every x ∈ U \ B, we
have that f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).

A k-extendible system constraint models a matroid-like
property satisfied by the set of feasible solutions to an ob-
jective function.

Definition 2 (k-Extendible System [29]). Let U be
a finite set and F , F ⊆ 2U , be a collection of subsets of
U . Set system (U,F) is called a k-extendible system if it
satisfies the following properties:

1. Downward-closure: If A ⊆ B and B ∈ F , then A ∈ F .

2. Exchange: Let A,B ∈ F with A ⊆ B, and let x ∈ U\B
be such that A∪{x} ∈ F . Then there exists Y ⊆ B\A,
|Y | ≤ k, such that (B \ Y)∪ {x} ∈ F . In other words,
let us start with any choice of two sets A and B such
that B is an extension of A. Suppose that there is an
element x such that the set A with x added to it also
belongs to F . Then we will be able to find a subset Y
inside B of size at most k such that if we remove the
elements of Y from B and add the element x to the
resulting set, it will also belong to the collection F .

Fisher et. al [31] showed that if the set of feasible solu-
tions forms a k-extendible system and the objective func-
tion is positive, monotone submodular, a natural greedy
algorithm, that incrementally adds an element that most
improves the current solution, is guaranteed to produce a
(k + 1)-approximate solution.

Theorem 1 (Fisher, Nemhauser, Wolsey [31]). Let
(U,F) be a k-extendible system for some k. Let W : 2U →
R+ be positive, monotone submodular function. The greedy
algorithm gives a (k + 1)-approximation algorithm for the
optimization problem that asks to determine max

F∈F
W (F).

Mestre [29] showed a stronger result that if the objec-
tive function is indeed linear, the greedy algorithm yields a
k-approximate solutions.

Theorem 2 (Mestre [29]). Let (U,F) be a k-extendible
system for some k. Let W : U → R+ be a weight function

v2(5)

v1(3)

v3(2)

2
3

5

v2

v1

v3

u

MWIS Instance I CA-WBM Instance G(I)

Figure 3: The reduction from MWIS to CA-WBM. Vertex
weights are in parentheses and edge weights are above the
edge. Edges in the original graph become (red) conflicts,
while all vertices are connected to a new vertex u with a
dashed blue edge. Degree constraints (not shown) are 1 for
v1, v2, v3 and 3 for u (i.e., the degrees of the vertices).

on U . The greedy algorithm gives a k-approximation algo-
rithm for the optimization problem that asks to determine
max
F∈F

W (F) where W (F) =
∑
s∈F

W (s) for any F ∈ F .

3. STRONGER HARDNESS FOR CA-WBM
CA-WBM is already known to be NP-Hard [10], based

on a reduction from the NP-hard Revenue Maximisation in
Interval Scheduling problem [3, 7, 19]. Here we give a sim-
pler reduction from the Maximum Weight Independent Set
(MWIS) problem (defined below), which, due to H̊astad [17],
has the stronger implication of being hard to approximate.

Maximum Weight Independent Set (MWIS)
Given a (not generally bipartite) graph G = (V,L,R), with
vertex set V = {v1, . . . , vn}, edge set L = {l1, . . . , lm}, and
vertex-labelling function R : V → R+, find the independent
set V ′ ⊆ V that maximises

∑
v∈V ′ R(v).

Theorem 3. Unless P=NP, there is no approximation
algorithm for CA-WBM with an approximation ratio n1−ε,
for any fixed ε > 0, where n = |U ∪ V |.

Proof. We give a polynomial-time reduction from the
NP-hard Maximum Weight Independent Set (MWIS) prob-
lem. Let I be an instance of MWIS. We construct a graph
G(I) = ((U, V), E,W), which is an instance of CA-WBM,
as follows:

• U = {u} and V is the same as in G,

• W (vk, u) = R(vk) for 1 ≤ k ≤ n,

• C = L,

• B(vk) = 1 for 1 ≤ k ≤ n and B(u) = n, and

• τ = 0.

We construct a graph with all vertices V of I isolated,
and connect them to a new vertex u. Any adjacent vertices
(u, v) ∈ L are added to the set of conflicts C. Denote E as
the set of edges connecting u and vertices of V , i.e., E =
{u} × V and assign the weight of vertex vi to edge (u, vi).
Figure 3 illustrates an example of such a reduction.

0.4

0.2

0.5

0.70.6
0.3
0.4

u1(2)

u2(2)

v1

v2

v3

v4

v5

score(HWBM) = 1.9

(a) Solution HWBM, no
group constraints

0.4

0.2

0.5

0.70.6
0.3
0.4

u1

〈1, 0, 1〉

u2

〈1, 1, 1〉

v1

v2

v3

v4

v5

V1

V3

V2

score(HGA-WBM-D) = 1.6

(b) Solution HGA-WBM-D satisfying
group degree constraints

Figure 4: Contrasting WBM (a) and GA-WBM-D (b). All
right-hand vertices v ∈ V have degree constraint 1. In
WBM, the only modellable diversity constraint is that u1, u2

cannot both choose v1 nor v5. In GA-WBM-D, we explic-
itly model three equivalence classes of similar vertices in V .
We constrain u1 and u2 to matching at most 〈1, 0, 1〉 and
〈1, 1, 1〉 vertices, respectively, from 〈V1,V2,V3〉, producing a
more diversified assignment.

For an optimal solution O of the CA-WBM instance G(I),
any two matched edges in O must not have the same end
point in V , since τ = 0. This implies that O corresponds
to an independent set in V for I, an instance of MWIS. In
addition, since W (vk, u) = R(vk) for 1 ≤ k ≤ n, the total
weight of edges in O also corresponds to the total weight
of vertices in the independent set in V . Hence, a maxi-
mum weight subgraph of an instance of CA-WBM satisfy-
ing the degree constraints and conflict constraints exactly
corresponds to a maximum weight independent set for an
instance of MWIS. Furthermore, we observe that the reduc-
tion above is a polynomial-time reduction, gap-preserving
reduction. Therefore, using the hardness of approximation
result for MWIS [17], we conclude that CA-WBM is NP-
hard and is not approximable with n1−ε for any ε > 0.

4. GA-WBM + DEGREE CONSTRAINTS
In this section, we introduce our first GA-WBM variant

(Section 4.1), wherein each group can be adjacent to a lim-
ited number of edges. We present an exact, efficient linear
programming algorithm (Section 4.2), demonstrating that
GA-WBM-D ∈ P (Theorem 4), and a scalable, greedy algo-
rithm (Section 4.3) that is 2-approximate (Theorem 5).

4.1 Problem Formulation
In many applications, items cluster into groups of mutual

similarity, and users should be matched to a limited num-
ber of items from the same group. For example, books can
be grouped by genre, topic, or author, and diverse match-
ings for a user should span the groups. GA-WBM partitions
the items into equivalence classes (groups) and imposes con-
straints on how much each user can be matched to each
class. In comparison to CA-WBM [10], partitioning into
equivalence classes can be viewed as all conflicts being tran-
sitive (i.e., the existence of conflicts (a, b) and (b, c) implies
(a, c) is a conflict). For genres, topics, and authors of books,
transitivity clearly holds.

1

3

5

7

9

2

4

6

8

10

u1

u2

v1

v2

v3

v4

v5

V1

V2

V3

(a) Original graph

1

3

5

7

9

2

4

6

8

10

u1
1

u2
1

u3
1

u1
2

u2
2

u3
2

v1

v2

v3

v4

v5

V1

V2

V3

(b) Split graph

Figure 5: Setup of the linear program for GA-WBM-D. The
original vertices of U (a) are split, one for each equivalence
class (b). The red ellipses indicate equivalence classes and
the integers on the edges show their sequence numbers.

In the degree-constraints version of GA-WBM, we limit
the number of edges that match each user u to each equiv-
alence class Vi. The problem is illustrated and contrasted
to WBM in Figure 4: here, V is partitioned into 3 groups,
V = 〈V1 = {v1, v2},V2 = {v3},V3 = {v4, v5}〉. Each vertex
of U has now a sequence of degree constraints, one for each
Vi. Thus GA-WBM can model that u1 should match to at
most one of v4, v5, a diversity constraint that is inexpressible
in WBM. We obtain an instance of WBM if we create only
one equivalence class, in which case the degree constraint se-
quence reduces to a single degree constraint for each u ∈ U .

Formally, we represent the degree constraints as a map-
ping from user-class pairs to integers. The number of edges
from a user u to vertices in an equivalence class Vi must not
exceed the limit specified in the mapping.

Group-Aware Weighted Bipartite B-Matching
Subject to Degree Constraints (GA-WBM-D)
Given G, a vertex-labelling function B : V → N, a parti-
tioning of V into k equivalence classes V = 〈V1 . . . ,Vk〉, and
a U-degree-constraint mapping D : (U × V) → N, find the
subgraph H = ((U, V), E′,W) maximising

∑
e∈E′ W (e) with

every vertex v ∈ V adjacent to at most B(v) edges and for
all vertex-class pairs (u ∈ U,Vi ∈ V):

|{e = (u, vj) ∈ E′ : vj ∈ Vi}| ≤ D(u,Vi).

4.2 A Linear Program for GA-WBM-D
Here we present a linear programming formulation to solve

GA-WBM-D, given inputsG = ((U, V), E,W),V, B,D, with
m = |U | and n = |V |. We denote by X = [xij]

T the
mn-dimensional column vector of 0-1 variables, by xij = 1
that item i is matched to user j and by xij = 0 otherwise.
Then GA-WBM-D finds the set of matches such that the
total profit is maximized under the degree constraints, i.e.,

max
X

WX

s.t. AX(i) ≤ Q(i),∀i, 1 ≤ i ≤ km+ n

xij ∈ {0, 1}, ∀i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

(1)

where matrix A is an (km + n) × mn matrix and Q is a
vector of values of B and D. That is, the degree constraints
are given by AX(i) ≤ Q(i), where AX(i) denotes the i-th
element in (vector) AX and Q(i) the i-th element in Q.

Below, we show that GA-WBM-D is in P by proving that
A is totally unimodular (TU). A matrix A is said to be
totally unimodular if the determinant of each square sub-
matrix of A is 0, −1 or 1. As [35, 33] show, if A is TU, the
polyhedron P = {X : AX ≤ Q} is integral and an integral
optimal solution can be found in polynomial time using an
LP algorithm.

Lemma 1. In the LP formulation of GA-WBM-D, the co-
efficient matrix A is totally unimodular (TU).

Proof. We need to prove that the matrix A in Problem 1
is totally unimodular. Note that A captures two types of de-
gree constraints; 1) a degree constraint of each item, and 2)
a sub-degree constraint for each user with regard to each
item group. There are n constraints of type 1 and km con-
straints of type 2 for a total of km+n constraints. In other
words, A is a (km+ n)×mn matrix.

In order to prove the lemma, we would like to make use
to well-known result that the incidence matrix of a bipartite
graph is totally unimodular [4, 37]. Our main observation
is that considering each users’ sub-degree constraints for k
conflict groups is equivalent to replacing each user vertex
with k copies, with each only connecting to a single item
group. Figure 5 shows such a transformation. The degree
constraint of each copy is the original vertex’s sub-degree
constraint for the corresponding item group. This transfor-
mation only increases the number of user vertices and the
transformed graph is still a bipartite graph. We call the
resulting graph as the split graph.

From the transformation in Figure 5, we can see that A is
the incidence matrix of the split graph in which original user
vertices have been replaced by the copies and is therefore
totally unimodular.

Therefore, we conclude that in the LP formulation of GA-
WBM-D, the coefficient matrix A is totally unimodular and
hence solving the LP always yields integral solutions.

From [35, 33], we immediately have the following theorem:

Theorem 4. There exists an algorithm that solves GA-
WBM-D in polynomial time.

4.3 A Greedy Algorithm for GA-WBM-D
Although Program 1 in Section 4.2 can be solved in poly-

nomial time and is exact, it scales poorly (see Section 6.3).
Therefore, we also introduce GREEDY-D (Algorithm 1), a
simple but provably approximate greedy algorithm. The
idea is to start with an empty edge set E′ (Line 1) and re-
peatedly add the next highest-weighted edge e (Lines 2–3)
if E′ ⋃{e} does not violate the degree constraints (Line 4).
After trying all e ∈ E, we return H = ((U, V), E′,W), a
new graph constructed with the greedily built edge set E′.

Although we will later evaluate the efficiency, scalability,
and accuracy of GREEDY-D empirically (Section 6.3), we
prove here a theoretical guarantee on its performance:

Theorem 5. Algorithm 1 is a 2-approximation algorithm.

Proof. Recall from Section 2.2 that we use the concept of
a k-extendible system to performance guarantees for greedy
algorithms. To apply this result to our problem, we will
check that the set of all feasible solutions to GA-WBM-D
forms a 2-extendible system. For the GA-WBM-D problem,
let U = E and F be the set of all subgraphs of G satisfying

Algorithm 1: GREEDY-D

Input: G = ((U, V), E,W),V, B,D
Output: A subgraph H = ((U, V), E′,W) satisfying

constraints B,D with a greedily-maximised
score,

∑
e∈E′ W (e)

1 E′ = ∅
2 Sort E by descending W (e)
3 for e ∈ E do
4 if H = ((U, V), E′ ⋃{e},W) does not violate B,D

then
5 E′ = E′ ⋃{e}

6 return A new graph H = ((U, V), E′,W)

the degree constraints on the items and the sub-degree con-
straints on the users. Then it is easy to see that (U,F) is
downward closed. That is, removing an edge from a feasible
solution H will always result in a feasible solution as this
will not cause any violation of constraints.

For the exchange property, consider the case when a new
edge e = (u, v) is added to a feasible solution H. Assume
that v ∈ Vi. We observe that adding e could result in a
violation of the degree constraint at v, and sub-degree con-
straint at u. However, this can be rectified by removing
two other edges, one incident on u and other incident on v.
Therefore, we obtain a 2-extendible system.

5. GA-WBM + BUDGET CEILINGS
This section presents a variant of GA-WBM that intro-

duces diversity through the optimisation function rather than
the constraints: it introduces a ceiling on the sum of edge
weights each u ∈ U can amass for each group, Vi. We for-
mally define the problem and prove it is hard (Section 5.1).
We then give an ILP formulation along with a tractable re-
laxation (Section 5.2) and, again, a greedy algorithm with a
constant-factor approximation guarantee (Section 5.3).

5.1 Problem Formulation
Section 4.1 formally modelled diversity in V by partition-

ing V into groups and constraining each user u ∈ U to a lim-
ited number of edges per group. With GA-WBM-B, we cap
the score each user can derive from each group by mapping
user-group pairs onto a real-valued budget ceiling. Figure 6
illustrates how capping budgets can produce the same di-
verse matchings as the group degree constraints in Figure 4.

Group-Aware Weighted Bipartite B-Matching
Subject to Budget Ceilings (GA-WBM-B)
Given G, B : U

⋃
V → N, a partitioning of V into V =

〈V1 . . . ,Vk〉, and a mapping C : (U × V) → R+, find the
subgraph H = ((U, V), E′,W) with every vertex u ∈ U

⋃
V

adjacent to ≤ B(u) edges that maximises the score function:

∑
u,Vi

min

C(u,Vi),
∑

(u,vj)∈E′,vj∈Vi

W (u, vj)

 .

This formulation is more natural for some applications.
For example, sponsored search auctions hosted by search en-
gines (e.g., Google, Bing, and Yahoo) include budget speci-
fication as a feature. To achieve better coverage, advertisers

0.4

0.2

0.5

0.70.6
0.3
0.4

u1(2)

u2(2)

v1

v2

v3

v4

v5

score(HWBM) = 1.9

(a) Solution HWBM, re-
peated from Figure 4a

0.4

0.2

0.5

0.70.6
0.3
0.4

u1

〈.8, .8, .8〉

u2

〈.6, .2, .3〉

v1

v2

v3

v4

v5

V1

V3

V2

score(HGA-WBM-B) = 1.5

(b) Solution HGA-WBM-B satisfying
budget ceilings for user-group pairs

Figure 6: Contrasting WBM (a) and GA-WBM-B (b) (c.f.,
Figure 4b). B(v) = 1 ∀v ∈ V and B(u) = 3 ∀u ∈ U . The
V3 budget for u1 is nearly saturated by the edge (u1, v5);
so, a higher score can be obtained by matching (u1, v2)
rather than (u1, v4). The V2 budget for u2 is over-satured
by (u2, v3), but no alternative produces a higher score; so,
the score only obtains the ceiling of 0.2 from the pair u2,V2.

who bid on keywords can specify budgets for different cate-
gories of keywords. The constraints are identical to WBM,
but a subgraph will no longer profit from matching a specific
user and item group once the ceiling has been hit; so, max-
imising the objective function requires diversifying across
groups. We obtain an instance of WBM if the ceilings are
sufficiently high, e.g.,

∑
e∈E W (e) for all user-group pairs.

GA-WBM-B generalizes themaximum budgeted allocation
(MBA) problem [2, 16, 23, 34]. Given n items and m users,
where each user i with budget Ci is willing to pay wij on
item j, MBA finds an allocation which maximises the to-
tal revenue. In MBA, each user has an overall budget on
all items and there is no constraint on the number of al-
located items. Each item, however, can be allocated only
once. Therefore, MBA can be regarded as a special case
of GA-WBM-B in which k is 1, B(u) = n for u ∈ U and
B(v) = 1 for v ∈ V . Since MBA is known to be NP-hard
and it is a special case of GA-WBM-B, GA-WBM-B is also
NP-hard. Therefore we have Theorem 6:

Theorem 6. GA-WBM-B is NP-hard.

5.2 Integer LP for GA-WBM-B
If one considers the sum of edge weights (e.g., users’ pay-

ments) in E′ to be the total revenue, then GA-WBM-B finds
the allocation which maximises the total revenue while sat-
isfying degree constraints. Due to the existence of budget
ceilings, users will have to receive items from diverse groups.
GA-WBM-B can be formulated as a linear program as fol-
lows by adapting the formulation in (1):

max
X

∑
i∈U

∑k

p=1
min

{
C(i,Vp),

∑
j∈Vp

wijxij

}
s.t. AX(i) ≤ B(i),∀i, 1 ≤ i ≤ m+ n

xij ∈ {0, 1}, ∀i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

(2)

where X = [xij]
T .

Since obtaining an integer solution from the LP in GA-
WBM-B is NP-hard, we use a rounding procedure to further

Algorithm 2: GREEDY-B

Input: G = ((U, V), E,W),V, B,C
Output: A subgraph H = ((U, V), E′,W) satisfying

constraints V, B,C with a greedily-maximised
score,

∑
e∈E′ W (e)

1 E′ = ∅, A = ∅
2 F is a universal set that contains all candidate edge
sets satisfying the degree constraints

3 A = {e|E′ ∪ e ∈ F}
4 while A 6= ∅ do
5 e∗ = argmax

e∈A
∆E′(e)

6 E′ = E′ ∪ {e∗}
7 A = {e|E′ ∪ {e} ∈ F}
8 return A new graph H = ((U, V), E′,W)

improve efficiency after solving the LP relaxation. Our LP-
based algorithm for GA-WBM-B is as follows:

1. Solve the linear program relaxation to obtain an opti-
mal solution S.

2. Sort the firstmn elements of S from largest to smallest.
We round each non-zero value to 1 provided doing so
does not violate the degree constraints or the budget
ceilings. Otherwise, we set it to 0.

We refer to this as the LP relaxation with rounding.

5.3 A Greedy Algorithm for GA-WBM-B
Given the hardness of GA-WBM-B, we introduce a greedy

algorithm with a theoretical guarantee by again establishing
connections to the problem of maximizing a non-negative
monotone submodular function subject to a k-extendible
system constraint. In Problem 2, the objective function,

g(X) =
∑

i∈U

∑k

p=1
min

{
C(i,Vp),

∑
j∈Vp

wijxij

}
,

is the sum of a series of budget-additive functions,
min(C(i,Vp),

∑
j∈Vp

wijxij), each of which is a monotone

submodular function. Since the sum of submodular func-
tions retains submodularity [15, 20], g(X) is also submod-
ular. wij is non-negative, thus it is easy to see that g(X)
is monotone. In addition, as discussed in Section 4.3, the
degree constraints form a 2-extendible system.

Algorithm 2 outlines a natural greedy algorithm, GREEDY-
B, for GA-WBM-B. Denote δl = ∆E′

l−1
(el) = g(E′

l)−g(E′
l−1)

as the value of increment (marginal revenue) in the objective
function when the lth edge el is added. The algorithm starts
with an empty solution edge set E′ and in each iteration adds
to E′ an edge that provides the maximum marginal revenue
without violating degree constraints. To ensure the newly
added edge is always valid, Algorithm 2 keeps track of a set
of all valid edges (A in Algorithm 2) with regard to the cur-
rent E′ (Lines 3 and 7). For any e ∈ A, it can be safely added
to E′ and the increased edge set still satisfies degree con-
straints, i.e., E′ ∪ {e} ∈ F , where F represents a collection
of subsets of E, each of which satisfies degree constraints.
Fisher, Nemhauser and Wolsey [31] showed that this greedy
algorithm gives a (k + 1)-approximation algorithm to the
problem of maximising a non-negative monotone submod-
ular function subject to a k-extendible system constraint.
Therefore, GREEDY-B is 3-approximate for GA-WBM-B.

Algorithm 3: GREEDY-B-LF

Input: G = ((U, V), E,W),V, B,C
Output: A subgraph H = ((U, V), E′,W) satisfying

constraints V, B,C with a greedily-maximised
score,

∑
e∈E′ W (e)

1 E′ = ∅
2 Set the upper heap (Hupper) as an empty max heap
3 for u ∈ U do
4 Set the lower heap (Hlower

(u)) as an empty max heap

5 for u’s neighbouring vertices v ∈ V do
6 w = W ((u, v)); δ = min(w,Cu,p), v ∈ Vp

7 Hlower
(u) .Append((δ, (u, v)));

8 Heapify(Hlower
(u)); Hupper.Append(Hlower

(u) [0])

9 Heapify(Hupper)
10 while Hupper 6= ∅ do
11 (δ, e) = Hupper[0], e = (u, v) , v ∈ Vp

12 if δ ≤ 0 then break
13 if E′ ∪ {e} violates degree constraints on u or v

then
14 Heappop(Hupper); Heappop(Hlower

(u))

15 if Hlower
(u) 6= ∅ then Heappush(Hupper, Hlower

(u) [0])

16 else if δ ≤ Cu,p then
17 E′ = E′ ∪ {e}; Update Cu,p and degree

constraints on u and v

18 Heappop(Hupper); Heappop(Hlower
(u))

19 if Hlower
(u) 6= ∅ then Heappush(Hupper, Hlower

(u) [0])

20 else
21 (δroot, eroot) = Hlower

(u) [0], eroot = (uroot, vroot),

vroot ∈ Vp

22 while δroot > Cu,p do
23 Update δroot and maintain the heap

invariant of Hlower
(u)

24 (δroot, eroot) = Hlower
(u) [0], eroot = (uroot, vroot),

vroot ∈ Vp

25 Heappop(Hupper)

26 Heappush(Hupper, Hlower
(u) [0])

27 return A new graph H = ((U, V), E′,W)

Algorithm 2 provides an intuitive high-level description of
the greedy idea. This simple approach, however, has poor
scalability in practice. For example, in each iteration, the
reconstruction of A must check every edge that is not in E′,
which is expensive if the original edge set E is large. In fact,
this is often the case in the real-world, where graph datasets
can have millions of edges. Therefore, the implementation
of the greedy approach requires non-trivial optimization to
be scalable to real-world datasets which are often large in
size.

GREEDY-B-LF (Algorithm 3) improves the scalability of
GREEDY-B by employing similar techniques to those pro-
posed in [30] and [25]. The main idea is to efficiently identify
a valid edge with maximum marginal revenue and keep the
marginal revenue of an edge updated only when necessary.
Specifically, we implement a two-level heap (e.g., Figure 7)
to store all valid edges and apply the lazy forward (LF)
technique for updating the marginal value when necessary.

(.7, v5) (.4, v1)

(.7, v5)

(.5, v4)

(.4, v1)

(.2, v2)

(.4, v1)

(.3, v5)

(.2, v3)

u1
〈.8, .8, .8〉

u2
〈.6, .2, .3〉

(.5, v4) (.4, v1)

(.5, v4)

(.4, v1)

(.2, v2)

(.4, v1)

(.3, v5)

(.2, v3)

u1
〈.8, .8, .1〉

u2
〈.6, .2, .3〉

Lower
heaps

Budgets

Upper

heap

pop
upper
root

delete
lower
root

Figure 7: The two-level heap and the lazy forward technique.
This example corresponds to Figure 6b.

Using the heap structure improves the efficiency of finding
an edge with maximum marginal value. For large graphs,
however, maintaining the heap invariant in a single, large
heap of marginal revenues for all edges is too expensive. So,
we exploit the observation that distinct item vertices in V
outnumber those user vertices in U (Table 1), and for any
two vertices u1, u2 ∈ U , marginal revenue updates to edges
of u1 does not affect edges of u2. Therefore we use a two-
level heap data structure as shown in Figure 7. In Figure 7,
an entry of each lower heap of u ∈ U is a tuple of u’s neigh-
bouring vertex v ∈ V and v’s marginal revenue with regard
to u’s current budget (Lines 4-7 in Algorithm 3). The num-
bers below u’s lower heap show u’s current budget for each
class. Since each u ∈ U maintains its own heap, the size of
each heap is reduced from |E| to ≈ |E|/|U |, and the corre-
sponding maintenance cost is much less. This approach also
applies to many other scenarios, such as budgeted resource
allocation and online advertising, where GA-WBM-B comes
in naturally, and where the bipartite graphs often have im-
balanced vertex sets. Ergo, we can use the smaller set’s
entities to distinguish the lower-level heaps, i.e., in our case,
each distinct u ∈ U maintains a heap structure where nodes
consist of all neighbouring v ∈ V and the corresponding
marginal values. The upper-level heap is constructed by the
roots of the lower-level heap (Line 8) and it will be used for
obtaining the edge with maximum marginal revenue (Line
11).

In addition, the lazy forward (LF) technique [30] can sig-
nificantly reduce unnecessary computation, because it up-
dates a stale marginal value of a node of the lower-level
heap only when the node becomes the root of the upper heap
(Lines 21-24 in Algorithm 3). Figure 7 shows an example
of LF. At the current iteration, after popping the current
upper root which is the root of u1’s heap, u1’s budget for V3

is reduced from 0.8 to 0.1. Since v4, v5 ∈ V3, the marginal
revenue of v4 to u1 should be reduced from 0.5 to 0.1. How-
ever, LF suppresses the update and hence v4 of u1 still has
a larger marginal revenue and becomes the new upper root.
In the next iteration, the upper root will be considered stale
and will be updated.

6. EXPERIMENTAL EVALUATION
In Sections 4–5 we proved worst-case guarantees for the

greedy algorithms. Here, we experimentally evaluate how
closely the greedy algorithms perform to the worst-case guar-
antees and how all proposed algorithms scale with input size.

6.1 Methodology

eBay Canada eBay US

25% 50% 75% 100% 25% 50% 75% 100%

Sellers (|U |) 471 942 1, 413 1, 884 66, 751 90, 925 109, 511 126, 101
Buyers (|V |) 4, 701 9, 381 14, 062 18, 742 1, 574, 114 2, 988, 717 4, 300, 322 5, 751, 334
Edges (|E|) 14, 130 28, 260 42, 390 56, 520 2, 846, 880 5, 693, 759 8, 540, 638 11, 387, 517

Table 1: Statistics of the semi-synthetic eBay datasets.

25% 50% 75% 100%

LP 2.98 11.50 22.64 41.88
GREEDY-D 0.06 0.13 0.23 0.29

Table 2: GA-WBM-D run times (s) on eBay Canada

25% 50% 75% 100%

ILP 0.91 2.50 2.66 3.96
LPR 0.55 1.00 1.52 2.10

GREEDY-B-LF 0.06 0.13 0.20 0.28

Table 3: GA-WBM-B run times (s) on eBay Canada

All experiments are run on a 64-bit Ubuntu 14.04 desktop
of 3.40 GHz * 8 Intel Core i7 CPU with 12 GB memory.

GA-WBM-D Both algorithms (LP and greedy) are poly-
nomial time, but the size of the LP grows quickly. We use
small datasets to evaluate the accuracy of the greedy algo-
rithm relative to the (exact) LP and the scalability of the
LP. We use large graphs to test the greedy algorithm’s scal-
ability.

GA-WBM-B As GA-WBM-B is NP-hard, our LP re-
laxation with rounding (LPR) is also approximate. We use
small graphs to evaluate the accuracy of LPR and the greedy
method and the scalability of the ILP/LPR methods. Large
graphs again test the greedy algorithm’s scalability.

For LP, ILP and LPR, we use the general mathematical
programming solver, Gurobi2, on Matlab. When we measure
the running time of an algorithm, we exclude the time spent
on loading data from the disk to the memory.

6.2 Datasets
We use two of our semi-synthetic eBay transaction datasets

of [10] and described in Table 1.Each transaction dataset
consists of seller vertices (U), buyer vertices (V), and edges
(E) representing buyer-seller interactions, such as purchases.
While the graph structure of eBay US reflects the true in-
teraction, the eBay Canada dataset has imputed edges: ac-
cording to [10], each seller is connected to 30 buyers after
imputation. For each dataset, there are four subsets of dif-
ferent sizes from the full graph, i.e., using 25%, 50%, 75%,
and 100% of the total number of edges (the number of buyer
and seller nodes decreases accordingly).

To accommodate the respective problem scenarios, we as-
sign random integer weights from the range [1, 1000] to edges
in both datasets. Each v ∈ V is uniformly, randomly classi-
fied into one of 20 groups. For GA-WBM-D, the group-
degree constraint of each u ∈ U (i.e. D(u,Vj)) is uni-
formly, randomly chosen from {0.1, 0.2, 0.3, 0.4, 0.5} ∗ |{v :
v ∈ Vj & (u, v) ∈ E}|. For GA-WBM-B, the degree con-
straint of each u ∈ U

⋃
V is set to 0.3 of the degree of

u. The budget ceiling of each u ∈ U (i.e., C(u,Vj)) is⌊
0.8

∑
(u,v)∈E,v∈Vj

W (v)
⌋
.

6.3 Results and Discussion
2http://www.gurobi.com/

GA-WBM-D Table 2 gives the running times of the
LP and the greedy algorithm (GREEDY-D) for the degree-
constrained problem on the small eBay Canada dataset. On
the 25% sample, GREEDY-D is already ≈ 50× faster than
the LP method. As the graph size doubles to 50% and then
100%, the run time of GREEDY-D increases linearly. In
contrast, the LP method quadruples run times for every
doubling of the graph. At 56, 520 edges, GREEDY-D is
≈ 144× faster. The memory consumption for this exper-
iment is shown in Figure 8b. Given the large number of
variables in the LP formulation, the solver consumes ≈ 3×
more memory than GREEDY-D (≈ 15×more memory if one
includes the constant overhead of loading Matlab, shown by
the “init” segment of the LP bar). The memory consump-
tion and quadratic scalability thus limit the graphs that LP
can handle.

Figure 8a compares the quality of the solution produced
by GREEDY-D to the optimal solution produced by the LP,
measured as the score of (i.e., sum of edge weights in) the
output subgraph H. GREEDY-D consistently achieves a
score that is ≥ 97.5% of the LP score with low variability, a
range of 0.0044, in that ratio. This indicates that although
GREEDY-D is a 2-approximation, it is able to vastly out-
perform its theoretical guarantee in practice.

Finally, Figure 8c evaluates GREEDY-D on the large eBay
US graph. The input instances—even the 25% sample of this
graph which is 50× larger than the 100% sample of eBay
Canada used in the previous experiments—are too large for
the LP. Observe that the greedy algorithm scales linearly
with the dataset in terms of both run time and memory
consumption and can handle the full graph, containing 5.8
million vertices and 11 million edges, in roughly one minute.

To summarise the GA-WBM-D results, the LP is reason-
ably efficient on small graphs and provides an exact solu-
tion. For larger graphs where the LP encounters scalability
issues both in terms of efficiency and memory consumption,
GREEDY-D appears to obtain a ≥ 97.5% quality solution
with very fast run times and good, linear scalability.

GA-WBM-B Table 3 gives the run times of the three al-
gorithms for the budget-capped problem on the eBay Canada
dataset. Observe that the type of constraints does not influ-
ence much the efficiency of our greedy algorithms: GREEDY-
B-LF (Algorithm 3) has near identical run times, and hence
scalability, as GREEDY-D (c.f., Table 2). The approximate
linear program using rounding (LPR) is about 1.9× faster
than the ILP, albeit ≈ 8× slower than the greedy algorithm.

0 2 4 6 8

2
5
%

5
0
%

7
5
%

1
0
0
%

1.556071

3.135870

4.754292

6.278610

1.587486

3.213619

4.858456

6.426569

Solution score (∗106)

P
er
ce
n
ta
g
e
o
f
a
ll
ed

g
es

LP GREEDY

(a) Solution score on 25, 50, 75, 100 %
samples of the eBay Canada dataset

25% 50% 75% 100%

0

200

400

I G I G I G I G
Percentage of all edges

P
e
a
k
 m

e
m

o
ry

 u
s
a
g
e
 (

M
B

)

Programs
init

ILP (I)

GREEDY (G)

(b) Peak memory usage on 25, 50, 75, 100
% samples of the eBay Canada dataset

25% 50% 75% 100%

Percentage of all edges

0
1

2
3

4
5

6
7

8
P

e
a
k
 m

e
m

o
ry

 u
s
a
g
e
 (

G
B

)

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
T

im
e
 (

S
e
c
o
n
d
s
)

Memory

Time

(c) Scalability of GREEDY-D on
25, 50, 75, 100 % samples of eBay US

Figure 8: Experiment plots for the LP and GREEDY-D algorithms on the degree-constrained problem (GA-WBM-D)

0 5 10 15

2
5
%

5
0
%

7
5
%

1
0
0
%

3.262678

6.511920

9.749443

13.026716

3.257430

6.513043

9.750755

13.030942

3.321765

6.636315

9.932007

13.252189

Solution score (∗106)

P
er
ce
n
ta
g
e
o
f
a
ll
ed

g
es

ILP LPR GREEDY

(a) Solution score on 25, 50, 75, 100 %
samples of the eBay Canada dataset

25% 50% 75% 100%

0

200

400

600

800

I L G I L G I L G I L G
Percentage of all edges

P
e
a
k
 m

e
m

o
ry

 u
s
a
g
e
 (

M
B

)

Programs
init

ILP (I)

LP.rounding (L)

GREEDY (G)

(b) Peak memory usage on 25, 50, 75, 100
% samples of the eBay Canada dataset

25% 50% 75% 100%

Percentage of all edges

0
1

2
3

4
5

P
e
a
k
 m

e
m

o
ry

 u
s
a
g
e
 (

G
B

)

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
T

im
e
 (

S
e
c
o
n
d
s
)

Memory

Time

(c) Scalability of GREEDY-B-LF on
25, 50, 75, 100 % samples of eBay US

Figure 9: Experiment plots for the ILP, LPR, and GREEDY-B algorithms on the budget-capped problem (GA-WBM-B)

Figure 9b shows the peak memory consumption of the
algorithms for the previous experiment. As in Figure 8b,
the LP-based approaches incur a 400 MB Matlab overhead
(the “init” component on the bars), accounting here for half
the memory consumption. LPR generally requires slightly
more memory than ILP, except on the 100% sample. The
better run time scalability of LP on GA-WBM-B, relative
to GA-WBM-D, is offset by escalated memory costs: both
ILP and LPR require, even excluding the “init” overhead,
an order of magnitude more memory than GREEDY-B-LF.

Figure 9a contrasts the solution quality of the approxi-
mate algorithms to the exact solution produced by the ILP
on the eBay Canada datasets. Both GREEDY-B-LF and
LPR obtain 98% of the ILP score on all samples. LPR
outperforms the greedy algorithm by 0.01-0.03%, except on
the 25% sample, where the greedy algorithm provides the
best approximate solution. Considering the large eBay US
dataset in Figure 9c, on which the memory consumption is
prohibitive for the LP-based algorithms, we observe that
GREEDY-B-LF again achieves linear scalability with re-
spect to both run time and memory consumption, albeit
with a gentler slope than in the degree-constrained problem
(c.f., Figure 8c). On the full graph, the greedy algorithm
uses < 5 GB of memory, indicating that the two-level heap
structure in the lazy forwarding scheme is quite compact.

To summarise the GA-WBM-B results, the ILP is very
efficient on small graphs, producing optimal solutions, but
it also demands a lot of memory relative to the greedy al-
gorithm. This impedes its scalability to larger graphs. The

greedy algorithm achieves excellent scalability while sacri-
ficing < 2% of the solution quality and easily scales to 107

edges. LPR provides a modest improvement in scalability
over ILP, coupled with a modest improvement in solution
quality over the greedy algorithm, so is poised to handle
boundary instances that are slightly too large for ILP.

7. RELATED WORK
GA-WBM-D is a special case of CA-WBM, first proposed

by Chen et al. [10] where the authors presented a general-
ized formulation of CA-WBM in the context of E-commerce,
where diverse matching results are often desired (e.g., movies
of different genres and merchants selling products of different
categories). They showed that CA-WBM is NP-hard and
proposed approximate and randomized algorithms to solve
CA-WBM. Since CA-WBM generalizes the classic WBM
problem, it has extended applicability in related scientific
fields, including resource allocation [5, 28], scheduling [13],
Internet advertising [12, 27, 11, 26, 6] and recommender
systems [1, 25]. GA-WBM-D is a special case of CA-WBM
useful for studying transitive conflicts.

GA-WBM-B generalizes the maximum budgeted alloca-
tion (MBA) problem and therefore is NP-hard [23, 16, 2, 34].
For MBA, the integrality gap is 3/4 [2]. Chakrabarty and
Goel [9] studied the approximability of MBA and achieved
3/4-approximation ratio by a linear programming based
(Assignment-LP) iterative rounding algorithm. They also
used hardness reductions to get better hardness results for
other allocation problems such as submodular welfare max-

imization (SWM), generalized assignment problem (GAP)
and maximum spanning star-forest (MSSF). Kalaitzis [18]
obtained an improved (3/4 + c)-approximation ratio, for
some constant c > 0, for MBA by by rounding solutions to
an LP called the Configuration-LP. They showed that the
Configuration-LP is strictly stronger than the Assignment-
LP for MBA. GA-WBM-B is also related to monotone sub-
modular set function maximization subject to the k-system
constraint. Fisher, Nemhauser and Wolsey [31] showed that
the natural greedy algorithm has a tight approximation ra-
tio of 1/(k+1). Călinescu et al. [8] proposed a randomized
(1−1/e)- approximation for any monotone submodular func-
tion and an arbitrary matroid. They also provided perfor-
mance analysis of the greedy algorithm under the k-system
constraint. To improve the efficiency of the greedy approach,
Minoux [30] proposed accelerated greedy algorithms. Those
techniques were recently used in [24, 25].

8. CONCLUSIONS
In this paper, we investigated generalisations of weighted

bipartite B-matching. We gave a new hardness proof for CA-
WBM by a reduction from Maximum Weight Independent
Set, yielding the stronger result that CA-WBM is hard to
approximate. We proposed GA-WBM-D and GA-WBM-B,
which partition the right-hand vertex set plus constrain the
degree and cap the budget, respectively, of the partitions.
While GA-WBM-D can be solved efficiently with linear pro-
gramming, the number of variables in the linear program cre-
ates scalability challenges. GA-WBM-B, on the other hand,
is a generalisation of the NP-hard maximum budgeted allo-
cation problem so cannot be solved efficiently. Nonetheless,
for both problems we introduced intuitive greedy algorithms
with approximation guarantees that, in practice, are nearly
as accurate as the linear programs, and moreover can pro-
cess a dataset with 11.3 million edges in about one minute.

9. ACKNOWLEDGMENTS
This research initiated at the 15thWorkshop on Computa-

tional Geometry at the Bellairs Research Institute of McGill
University and was partially supported by the FRIPRO pro-
gram of the Norwegian Research Council (ExiBiDa project).

10. REFERENCES
[1] G. Adomavicius and Y. Kwon. Maximizing aggregate

recommendation diversity: A graph-theoretic approach. In
Proc. DiveRS, page 3, 2011.

[2] N. Andelman and Y. Mansour. Auctions with budget
constraints. In Proc. SWAT, pages 26–38, 2004.

[3] E. M. Arkin and E. B. Silverberg. Scheduling jobs with fixed
start and end times. Discrete Appl. Math., 18(1):1–8, 1987.

[4] A. S. Asratian, T. M. J. Denley, and R. Häggkvist. Bipartite
Graphs and Their Applications. Cambridge University Press,
New York, NY, USA, 1998.

[5] D. P. Bertsekas. A new algorithm for the assignment problem.
Math. Program., 21(1):152–171, 1981.

[6] A. Bhalgat, N. Korula, H. Leontyev, M. Lin, and V. S.
Mirrokni. Partner tiering in display advertising. In Proc.
WSDM, pages 133–142, 2014.

[7] R. Bhatia, J. Chuzhoy, A. Freund, and N. J. (Seffi). Algorithmic
aspects of bandwidth trading. TALG, 3(1):10:1–10:19, 2007.

[8] G. Călinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing
a monotone submodular function subject to a matroid
constraint. SIAM J. Comput., 40(6):1740–1766, 2011.

[9] D. Chakrabarty and G. Goel. On the approximability of
budgeted allocations and improved lower bounds for
submodular welfare maximization and gap. SIAM J. Comp.,
39(6):2189–2211, 2010.

[10] C. Chen, L. Zheng, V. Srinivasan, A. Thomo, K. Wu, and
A. Sukow. Conflict-aware weighted bipartite B-matching and
its application to e-commerce. TKDE, 28(6):1475–1488, 2016.

[11] N. R. Devanur and T. P. Hayes. The adwords problem: online
keyword matching with budgeted bidders under random
permutations. In Proc. EC, pages 71–78, 2009.

[12] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet
advertising and the generalized second-price auction: Selling
billions of dollars worth of keywords. The American economic
review, 97(1):242–259, 2007.

[13] M. Fayyazi, D. Kaeli, and W. Meleis. Parallel maximum weight
bipartite matching algorithms for scheduling in input-queued
switches. In Proc. IPDPS, page 4, 2004.

[14] D. Fleder and K. Hosanagar. Blockbuster culture’s next rise or
fall: The impact of recommender systems on sales diversity.
Manage. Sci., 55(5):697–712, 2009.

[15] S. Fujishige. Submodular functions and optimization. Annals
of discrete mathematics. Elsevier, Amsterdam, Boston, Paris,
2005.

[16] R. Garg, V. Kumar, and V. Pandit. Approximation algorithms
for budget-constrained auctions. In Proc. APPROX, pages
102–113, 2001.

[17] J. H̊astad. Clique is hard to approximate withinn 1- ε. Acta
Mathematica, 182(1):105–142, 1999.

[18] C. Kalaitzis. An improved approximation guarantee for the
maximum budgeted allocation problem. In Proc. SODA, pages
1048–1066, 2016.

[19] A. W. J. Kolen, J. K. Lenstra, C. H. Papadimitriou, and
F. C. R. Spieksma. Interval scheduling: A survey. Naval
Research Logistics, 54(5):530–543, 2007.

[20] A. Krause and C. Guestrin. Beyond convexity: Submodularity
in machine learning. ICML Tutorials, 2008.

[21] H. W. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2:83–97, 1955.

[22] N. Lathia, S. Hailes, L. Capra, and X. Amatriain. Temporal
diversity in recommender systems. In SIGIR, pages 210–217,
2010.

[23] B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial
auctions with decreasing marginal utilities. In Proc. EC, pages
18–28, 2001.

[24] J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynamics
of viral marketing. TWEB, 1(1):5, 2007.

[25] W. Lu, S. Chen, K. Li, and L. V. Lakshmanan. Show me the
money: dynamic recommendations for revenue maximization.
PVLDB, 7(14):1785–1796, 2014.

[26] A. Mehta. Online matching and ad allocation. Found. and
Trends in Theor. Comput. Sci., 8(4):265–368, 2013.

[27] A. Mehta, A. Saberi, U. V. Vazirani, and V. V. Vazirani.
Adwords and generalized online matching. J. ACM, 54(5),
2007.

[28] R. Meir, Y. Chen, and M. Feldman. Efficient parking allocation
as online bipartite matching with posted prices. In Proc.
AAMAS, pages 303–310, 2013.

[29] J. Mestre. Greedy in approximation algorithms. In ESA, pages
528–539, 2006.

[30] M. Minoux. Accelerated greedy algorithms for maximizing
submodular set functions. In Proc. Optimization Techniques,
pages 234–243, 1978.

[31] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis
of approximations for maximizing submodular set functions—I.
Math. Program., 14(1):265–294, 1978.

[32] F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse
rankings with multi-armed bandits. In ICML, pages 784–791,
2008.

[33] K. R. Rebman. Total unimodularity and the transportation
problem: a generalization. Linear Algebra and its
Applications, 8(1):11 – 24, 1974.

[34] T. Sandholm and S. Suri. Side constraints and non-price
attributes in markets. Games and Economic Behavior,
55(2):321–330, 2006.

[35] A. Schrijver. Theory of Linear and Integer Programming.
John Wiley & Sons, Inc., New York, NY, USA, 1986.

[36] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and
S. A. Yahia. Efficient computation of diverse query results. In
ICDE, pages 228–236, 2008.

[37] M. Yannakakis. On a class of totally unimodular matrices. In
Proc. FOCS, pages 10–16, Oct 1980.

[38] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen.
Improving recommendation lists through topic diversification.
In WWW, pages 22–32, 2005.

	Introduction
	Definitions and Preliminaries
	Bipartite B-matchings
	k-Extendible systems

	Stronger Hardness for CA-WBM
	GA-WBM + Degree Constraints
	Problem Formulation
	A Linear Program for GA-WBM-D
	A Greedy Algorithm for GA-WBM-D

	GA-WBM + Budget Ceilings
	Problem Formulation
	Integer LP for GA-WBM-B
	A Greedy Algorithm for GA-WBM-B

	Experimental Evaluation
	Methodology
	Datasets
	Results and Discussion

	Related Work
	Conclusions
	Acknowledgments
	References

