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Abstract

Brown clustering is an established technique, used in hun-
dreds of computational linguistics papers each year, to group
word types that have similar distributional information. It is
unsupervised and can be used to create powerful word repre-
sentations for machine learning. Despite its improbable suc-
cess relative to more complex methods, few have investigated
whether Brown clustering has really been applied optimally.
In this paper, we present a subtle but profound generalisation
of Brown clustering to improve the overall quality by decou-
pling the number of output classes from the computational
active set size. Moreover, the generalisation permits a novel
approach to feature selection from Brown clusters: We show
that the standard approach of shearing the Brown clustering
output tree at arbitrary bitlengths is lossy and that features
should be chosen insead by rolling up Generalised Brown hi-
erarchies. The generalisation and corresponding feature gen-
eration is more principled, challenging the way Brown clus-
tering is currently understood and applied.

1 Introduction
For most statistical NLP tasks, performance is limited by
the quality of the underlying representation (i.e., features)
of words. Consequently, recent research has focused on
improving word representations (Bengio et al. 2003; Ba-
roni, Dinu, and Kruszewski 2014) and shown that a sim-
ple unsupervised technique, Brown clustering, produces ex-
cellent features that are competitive with far newer ap-
proaches (Bansal, Gimpel, and Livescu 2014; Qu et al.
2015). We posit that the features produced from Brown clus-
tering can be significantly improved.

Brown clustering (Brown et al. 1992) learns word repre-
sentations by clustering word types using bigram mutual in-
formation (Shannon 1956; van Rijsbergen 1977) as a greedy
heuristic, and then constructing a binary hierarchy over the
clusters (like Figure 1). Representation of a word is thus a
single feature: an encoding of the ID of the leaf in which the
word appears; additional features can be extracted by con-
sidering ancestor nodes at pre-specified depths. This repre-
sentation yields strong performance in a wide range of NLP
tasks, including semi- and unsupervised scenarios (Koo,
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love, eat

you, Icats, dogs

Figure 1: A hierarchical clustering of semantically similar
terms. Leaves correspond to clusters of words, and leaves
near common parents correspond to similar clusters.

Carreras, and Collins 2008; Blunsom and Cohn 2011), per-
forming as well as or better than the recent embeddings (Qu
et al. 2015; Šuster, van Noord, and Titov 2015).

We propose that better representations can be generated
with a subtle generalisation of Brown clustering. Previous
work on improving Brown clustering features is limited, fo-
cusing on hyperparametre and input representation tuning.
By contrast, we propose abandoning the tree structure and
instead defining features using mutual information.

We begin by introducing our Generalised Brown algo-
rithm. The existing Brown clustering algorithm artificially
constrains its greedy search space based on the pre-specified
output size. Although computational resources are becom-
ing faster and more parallel, coarse granularity Brown clus-
tering cannot leverage modern computational resources to
search a larger space of possible configurations. Conversely,
exploring a larger search space fractures output clusters. Ei-
ther case compromises solution quality. Generalised Brown
decouples search space size from output size, freeing the al-
gorithm to explore as many possible configurations as com-
putationally feasible, thereby improving the quality of the
set of output clusters. Furthermore, Generalised Brown run
once generates thousands of potential features.

We then turn to feature generation. The traditional
method—generating additional features based on ancestor
nodes—yields varied granularities of clusters, but in an arti-
ficially balanced and data-agnostic manner. We introduce a
method, based on Generalised Brown, that, rather than us-
ing tree structure to vary granularity, uses mutual informa-
tion. This ensures that the quality and number of clusters can
be explicitly controlled, and allows the choice of features to
arise from the input corpus, rather than an arbitrary set of
integers. We further show great potential for mining ideal



Cluster ID Constituent word types

00111001 can cn cann caan cannn ckan shalll
ccan caaan cannnn caaaan

001011111001

ii id ion iv ll iii ud wd uma ul idnt
provoking hed 1+1 ididnt hast ine
2+2 idw #thingsblackpeopledo iiii

#onlywhitepeople dost doan
uon apt-get

01111010111110

hoping wishing considering wishin
contemplating dreading regretting

hopin hopeing considerin
suspecting regreting wishn

comtemplating hopen

Table 1: Sample Brown clusters over English tweets.1

features from the Generalised Brown output.
These contributions may profoundly change the way

Brown clustering is understood and employed. This already-
powerful technique gains a strong overhaul as a result.

Outline and contributions Section 2 formally describes
Brown clustering and related work. Sections 3-4 present and
validate contributions, listed below. Section 5 concludes.

• We generalise the Brown clustering algorithm by intro-
ducing a new hyper-parametre, active set, a; we com-
pletely decouple the well-known hyper-parametre, num-
ber of classes, from computation (Section 3).

• Based on Generalised Brown, we introduce a new method
of feature selection that varies granularity based on mu-
tual information, rather than hierarchical path length, im-
proving down-stream NER performance (Section 4).

• We release a software toolkit for creating the generalised
output and feature extraction we present.

2 The classic view of Brown clustering
We begin by re-presenting Brown clustering for both the
familiar and unfamiliar reader, for two reasons. First, we
favour a more formal definition of the algorithm than was
presented originally (Brown et al. 1992) and in subsequent
work. Second, our presentation of Brown clustering will bet-
ter illuminate the changes in our generalisation thereof.

We present first the clustering algorithm and notation used
throughout this paper (Section 2.1), then methods for ex-
tracting features from the algorithm’s output (Section 2.2).

2.1 The clustering method, formalised
Brown clustering (Brown et al. 1992) is a greedy, hierarchi-
cal, agglomerative hard clustering algorithm to partition a
vocabulary into a set of clusters with minimal loss in mu-
tual information (Shannon 1956; van Rijsbergen 1977). The
target number of clusters is specified in advance and these
output clusters are organised as leaves of a binary tree (as in

1http://www.ark.cs.cmu.edu/TweetNLP/
cluster_viewer.html

Figure 1). The use of mutual information as a greedy heuris-
tic produces clusters wherein member word types are found
in similar contexts (i.e. have similar distributionality). Paths
to clusters are given as bit strings, indicating branches from
the root. Table 1 shows some example Brown clusters from
a large corpus.

Notation We first introduce the following notation. Let S
denote an input sequence and let VS denote the unique sym-
bols in sequence S (i.e., the vocabulary), sorted by descend-
ing frequency.2 By VS[k], we denote the k’th symbol in VS.
A cluster, Ci, is a subset of VS and all clusters are disjoint
(i.e., Ci∩Cj 6= ∅ =⇒ i = j). A complete clustering of the
vocabulary is a set of clusters C =

{
C0, . . . ,C|C|−1

}
that

is complete (i.e.,
⋃
Ci = VS). Also, adjacent symbols (i.e.,

bigrams) in S are denoted 〈l, r〉 and the relative frequency
of 〈l, r〉 in S is denoted p(〈l, r〉). Further, let p(〈l, ∗〉) =∑

r∈V(S) p(〈l, r〉) and p(〈∗, r〉) =
∑

l∈V(S) p(〈l, r〉).
Analogously, we denote adjacent symbols from Ci and Cj

by 〈Ci,Cj〉 =
∑

l∈Ci,r∈Cj
〈l, r〉, and the relative frequency

in S of 〈Ci,Cj〉 as p(〈Ci,Cj〉). Finally, let p(〈Ci, ∗〉) =∑
l∈Ci

p(〈l, ∗〉) and p(〈∗,Cj〉) =
∑

r∈Cj
p(〈∗, r〉).

The average mutual information (AMI) of a set of clus-
ters is defined in two parts (Definitions 1-2). AMI is high if
frequent bigrams appear nearly as often as their two symbols
independently appear:
Definition 1 (Mutual information/MI). The mutual informa-
tion of two classes, Ci,Cj ∈ C, denoted MI(Ci,Cj), is3:

MI(Ci,Cj) = p(〈Ci,Cj〉) log2
p(〈Ci,Cj〉)

p(〈Ci, ∗〉) p(〈∗,Cj〉)

Definition 2 (Average mutual information/AMI). The aver-
age mutual information of C, denoted AMI(C), is the sum
of mutual information of all pairs of clusters in C:

AMI(C) =
∑

Ci,Cj∈C
MI(Ci,Cj)

The Brown clustering algorithm repeatedly finds from a
set of clusters a top pair (Definition 4) based on AMI and
then conducts a merge (Definition 3) of the top pair.
Definition 3 (Merge). A merge operation in C, denoted
Ci←j combines clusters Ci and Cj :

Ci←j = (C \ {Ci,Cj}) ∪ {Ci ∪ Cj}

Definition 4 (Top pair). A top pair, denoted π̂(C), is a pair
of classes the merging of which least reduces AMI:

π̂(C) = argmax
Ci,Cj∈C,i6=j

AMI(C)−AMI(Ci←j).

Algorithm description Algorithm 1 describes Brown
clustering in terms of the notation introduced above. Ini-
tially, the |C| most frequent symbols (e.g. word types) are
assigned to unique clusters (Line 1). Then, the first phase it-
eratively adds the next most frequent symbol to a new cluster

2Ties may be broken e.g. orthographically or by first index in S.
3To simplify, we assume ∀l, r ∈ VS, p(〈l, ∗〉), p(〈∗, r〉) > 0.



Algorithm 1 Brown clustering as proposed by Brown et al.
Input: Sequence S and target number of clusters, |C|
Output: Set of Brown clusters, C, organised in a tree
1: C := {{VS[0]}, . . . , {VS[|C| − 1]}}
2: for k = 0 . . . |VS| − 2 do
3: if |C|+ k < |VS| then
4: C := C ∪ {VS[|C|+ k]}
5: (Ci,Cj) := π̂(C)
6: C := Ci←j

7: else
8: (Ci,Cj) := π̂(C)
9: C := Ci←j

10: Create tree node for Ci←j with children Ci and Cj

(Line 4), determines the pairwise merge that decreases AMI
the least (Line 5), and then merges those two clusters (Line
6). This clustering phase continues until the last symbol has
been processed (Line 3). The phase ends exactly when C
becomes a complete clustering of the vocabulary. AMI gen-
erally increases in this phase.

The tree-building phase continues the pattern of identify-
ing (Line 8) and conducting (Line 9) merges, but without
seeding new clusters. Rather, it constructs a binary hierar-
chy over the clusters (Line 10). This phase ends once the
hierarchy is a single tree and all symbols are assigned to one
cluster (the root). AMI decreases monotonically.

Variations on the method Brown clustering was intro-
duced with a dynamic programming method to accelerate
the expensive discovery of top pairs (Brown et al. 1992).
Still, Brown clustering is often applied to data modified in
order to reduce runtime. Liang (2005) cleans an input cor-
pus, heuristically removing non-text lines from the input.
The side effects are the removal of real data (false positives)
and the creation of spurious bigrams because lines surround-
ing removed bigrams become conjoined. Another strategy is
to remove low-frequency tokens, at the cost of distributional
and word-type information; e.g., Owoputi et al. (2012) filter
tokens that appear < 40 times in the input.

Brown clustering has been extended to include trigrams
as well as bigrams (Martin, Liermann, and Ney 1998). It
is sometimes adapted to take into account transitions be-
tween things other than classes, although this is usually us-
ing a small active set (Chrupała 2012; Šuster and van Noord
2014). Finally Stratos et al. (2014) soften the computational
impact by converging on Brown over time.

2.2 Feature generation
Once the tree is built, feature extraction is possible. Line 10
of Algorithm 1 builds a binary hierarchy in which each
Brown cluster is a leaf. As with any binary tree, we can as-
sign every leaf a unique binary encoding based on its path
from the root: every left branch is indicated by a 0 and every
right branch, by 1. Indeed, any node (not just leaves) can be
assigned a unique encoding this way. There are two principal
methods in NLP for generating features from the hierarchy
of clusters, differing in how the encodings are used.

Algorithm 2 Generalised Brown clustering
Input: S, |C|, and active set size, a
1: C := {{VS[0]}, . . . , {VS[a− 1]}}
2: for k = 0 . . . |VS| − 2 do
3: if a+ k < |VS| then
4: C := C ∪ {VS[a+ k]}
5: (Ci,Cj) := π̂(C)
6: C := Ci←j

7: Create tree node for Ci←j with children Ci and Cj

and label it with (|VS| − k − 1,AMI(Ci←j))

Class-only Class-only (henceforth first-complete-
clustering) methods use the set of clusters without the hier-
archy (Christodoulopoulos, Goldwater, and Steedman 2010;
Stratos, Collins, and Hsu 2015). The feature value assigned
to each symbol v ∈ VS is the binary encoding of the unique
leaf containing v; essentially, the binary encoding serves
only as a unique identifier for each cluster.

Path-prefix-based Path-prefix-based (henceforth shear-
ing) methods truncate encodings to generate multiple fea-
tures (Miller, Guinness, and Zamanian 2004; Koo, Carreras,
and Collins 2008; Ratinov and Roth 2009). Truncating en-
codings to a length of l reduces the number of unique fea-
ture values to ≤ 2l, thereby merging all symbols in any de-
scendent of a node n at depth l into n (the lowest common
ancestor). Each new truncation length produces new, com-
plete clusterings, each of a different granularity. For exam-
ple, when bit depths of 4, 6 and 10 are chosen (common val-
ues), the word shalll in Table 1 could by represented by the
three features “p4b0011”, “p6b001110”, “p10b00111001”.

One can combine first-complete-clustering and shearing
by shearing the tree only once (Plank and Moschitti 2013).

3 Generalised Brown clustering
Brown clustering has one hyperparametre, the number of
classes, |C|. In this section, we generalise the algorithm by
introducing a second hyperparametre (an active set size, a).
One can see classical Brown clustering as having always as-
signed these two hyperparametres the same value (a = |C|)
and see Generalised Brown as decoupling them along func-
tional boundaries. The importance of the decoupling is two-
fold: one execution of Generalised Brown simultaneously
builds clusterings for all |C| ≤ a; and a side-effect of small
|C|, a striking sacrifice in solution quality, is eliminated.

3.1 The decoupling of a from |C|
An elegant aspect of Brown clustering (Algorithm 1) is that
the main work (Lines 5-6 and 8-9) is identical in both phases
(clustering and tree-building). The phases differ in whether
to seed a new cluster (Line 4) or construct a new tree node
(Line 10). However, we observe that this difference is an
artefact of two unnecessary restrictions: (a) Line 1 seeds ex-
actly |C| clusters, but the algorithm need not start and end
with the same number of clusters; (b) Line 10 builds a tree
over the last |C| − 1 merges (of the |C| output clusters), but
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Figure 2: A Generalised Brown tree. Merge numbers are la-
beled on inner nodes and circles illustrate the classes when
|C| = 4. Shearing at l = 2 (the dashed line) does not cor-
respond to an AMI-based clustering, because AMI-based
merges do not build the tree in breadth-first order.

the tree could be built over all |VS| − 1 merges and shrunk
(many ways) in post-processing.

The problem with seeding the algorithm with exactly |C|
clusters is that the greedy search space for π̂(C) on Line 5
is constrained to |C|2 pairs. Computational efficiency moti-
vates this constraint. However, especially with modern-day,
multi-core CPUs at one’s disposal, constraining the search
space so severely unnecessarily compromises solution qual-
ity. Meanwhile, simply increasing |C| in order to increase
the search space may produce an undesirably fine cluster
granularity. Thus, it makes sense to vary these parametres
(search space size and output granularity) independently.
The problem with building a smaller tree is that it artificially
constrains future possibilities for feature generation.

Generalised Brown (Algorithm 2) removes these restric-
tions by seeding the clustering with a new hyperparametre,
a, which is independent of the output size (Lines 1 and 3).
Line 7 builds an annotated tree for all merges. Notably, |C| is
unused (until feature generation). We demonstrate the effect
of this generalisation empirically in Section 3.3.

3.2 Generalised Brown: basic feature generation
Generalised Brown produces a complete tree over V, with
each inner node—which corresponds to a unique merge—
annotated by a sequence number and the AMI remaining.
Extracting the clustering for |C| with a rolling up proce-
dure is straight-forward from this representation: given |C|,
merge all leaves of the tree into their highest ancestor with
a sequence number ≥ |C|. The set of leaves in the resul-
tant, “rolled-up” tree is the output set C of clusters. Figure 2
illustrates the procedure for |C| = 4.

The results depend on the relationship of |C| and a:

|C| > a: the clustering is not complete. Generalised
Brown should be executed with a larger a.

|C| ≤ a:

the clustering is complete and has exactly |C|
clusters. This corresponds to executing a cluster-
ing phase until the merge with sequence number
|C| and a tree-building phase thereafter.

|C| = a: the result is exactly that of Algorithm 1. This is
the first complete clustering.

|C| a=|C| a=2560 |C| a=|C| a=2560
10 11.31 20.42 160 23.93 42.94
20 20.09 26.66 400 40.62 46.07
40 25.23 35.98 800 46.51 47.87
80 26.78 38.40 1000 46.47 48.23

Table 2: NER performance (F1) with active set decoupling.

This procedure implies that, given a Generalised Brown
tree generated once with a, one can construct a complete
clustering in O(|VS|) for any |C| ≤ a, including the output
of classical Brown clustering (Algorithm 1).

3.3 Generalised Brown: empirical evaluation
Table 2 presents extrinsic results for decoupling a and |C|.
We measure F1 at the CoNLL’03 task’s test-B set, using a
linear-chain CRF and shearing at depths 4, 6, 10 and 20 as
the only features, evaluating with CRFsuite at token level.
The first column indicates the number of output classes,
and the next columns show F1 for classic Brown cluster-
ing (where a = |C|) and for Generalised Brown (where a
is set to a large value suggested by Derczynski, Chester, and
Bøgh (2015)), respectively. The benefits of a larger active set
are clear, especially with lower values of |C|. Note also the
stronger monoticity of performance with |C| under large a,
likely due to the increased search space.

To better understand Table 2, we evaluate the cluster
quality, measured in terms of AMI, of the decoupling. Us-
ing a computationally feasible subset of the Brown cor-
pus (Francis and Kucera 1979) with 12k tokens and 3.7k
word types,4 we run Generalised Brown with values of
a ∈ {4, 45, 300, 1000, 1500, |VS|}. For each a, we measure
the AMI for every possible choice |C| ∈ {1, 2, 3, . . . , |VS|}.
The results are plotted in Figure 3, with |C| on the x-axis,
AMI on the y-axis, and a separate curve for each value of a.

First, observe a consistent trend for each value of a: AMI
initially climbs as one decreases |C| from |VS| (move right)

4 This corpus choice allows easier demonstration of the gen-
eral behaviours seen when doing Brown clustering; the resulting
graphs for the larger RCV1 dataset are roughly similar, but with a
predominant and uneventful middle section.
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Figure 3: Total AMI as merges progress, for varying a.



Method Parametres F1
Shearing l = {4, 6, 10, 20} 86.81
Shearing + GB |C| = {16, 55, 441, 2557} 87.14
GB at 2l |C| = {16, 64, 1024,≤ 220} 87.24

again, but using only cluster features, as in Table 2:
Shearing l = {4, 6, 10, 20} 48.23
Shearing + GB |C| = {16, 55, 441, 2557} 48.78
GB at 2l |C| = {16, 64, 1024,≤ 220} 51.13

Table 3: Comparing feature extraction for CoNLL’03 NER.

until it reaches a peak exactly when |C| = a, after which
AMI decreases rapidly. For a = |VS|, there is no climbing
phase, because it starts at the |C| = a peak. The peak at a =
|C| coincides with the first complete clustering: the increase
from the left towards the peak occurs as new symbols are
considered, bringing additional information. The decrease to
the right of the peak occurs because no new information is
added (all symbols have been considered), yet more symbols
are concentrated into fewer clusters. This suggests that, for
any a, peak AMI is found where |C| = a, explaining some
of the success of classical Brown clustering.

Next, observe that larger values of a have higher initial
AMI (leftmost y-value) and peak AMI (maximum y-value).
We see this because, prior to and including the first complete
clustering, larger active sets have considered more symbols.
Observe the fixed x-value, |C| = 1000. This corresponds to
the peak value for a = 1000. There is slightly less AMI than
for a > 1000. A similar effect occurs at |C| = 1500 for
a = 1500. This is the impact of the increased greedy search
space for each iteration, afforded by a larger a; by selecting
a > |C|, one obtains a slightly better C.

There is a counter-point. For very small |C| ≤ 45, small
active sets produce higher AMI. Peaks for small active sets
occur after the main inflection point of the curve larger a;
while large active sets rapidly lose information during final
merges, small active sets still add new symbols at low cost.
This suggests that if one wants a single very small clustering,
a small active set gives better quality; otherwise, the active
set should be made as large as computationally feasible.

As a final observation from this plot, notice that the curves
for a ≥ 45 converge, suggesting that to produce C, one can
effectively use any Generalised Brown tree generated with
a ≥ |C|. This supports this section’s main claim, that run-
ning Generalised Brown once with a large a matches classi-
cal Brown run with thousands of values of |C|.

4 AMI-based feature generation
In Section 3, we showed that a Generalised Brown tree can
be used to produce a single clustering of any granularity, |C|,
by rolling up leaves to sequence number |C| − 1. This sec-
tion discusses how to generate a good set of features (i.e.,
multiple granularities of/choices for |C|). Shearing is the
method known in the literature. We present a simple alter-
native to shearing that produces higher quality clusterings.
Finally, we investigate how granularities could be directly
mined from the data.

l |C| AMI-Shearing AMI-GB
4 16 0.6735 0.8285
6 55 1.1569 1.3243

10 441 1.9055 2.0264
20 2557 2.6301 2.6307
all 2560 2.6309 2.6309

Table 4: Remaining AMI when extracting features through
shearing vs. through rolling-up Generalised Brown.

4.1 An alternative to shearing

Reconsider the clusters in Figure 2. An important observa-
tion, clear in this example, is that “rolling up” clusters sel-
dom produces a balanced tree. Neither does classical Brown
clustering. These trees are imbalanced because the cost of
merges varies: here, merges on the right of the tree precede
those on the left, because there is higher distributional sim-
ilarity in the input corpus among symbols on the right. This
reflects that language itself is imbalanced. We would not ex-
pect the loss of AMI (ergo, merge order) to evenly distribute
across a vocabulary.

On the other hand, the shearing method, illustrated by the
horizontal line, attempts to construct a balanced hierarchical
clustering. Consequently, similar words on the right-hand
side of the tree are split into separate clusters, while less sim-
ilar words are expensively merged to maintain an even path-
prefix length. Although AMI is used to produce the initial
hierarchy, shearing disregards it in final feature generation.

We propose that a better approach to produce multiple
granularities is with multiple roll ups of the same Gener-
alised Brown tree. For example, rather than cutting at levels
l = 3, 4, 5, one may roll up to |C| = 23, 24, 25. While pro-
viding finer control over the number of clusters in each clus-
tering, this approach picks the set of clusters that greedily
minimises AMI loss—the objective of Brown clustering.

4.2 Experiments on feature generation

Extrinsic results To evaluate this feature extraction, we
try the classical newswire NER task as in CoNLL, using
a simple linear-chain CRF. Results, measured with F1, are
given in Table 3. As a baseline, shearing features are used at
four levels: the classical bitdepths of {4, 6, 10, 20}. This pro-
duces clusterings of sizes |C| = {16, 55, 441, 2557}. This is
first compared to roll-up feature generation, using the same
number of clusters. In addition, rolling-up is performed at 2l
clusters, again using l = {4, 6, 10, 20}.

The feature extraction setup is similar to that of Turian,
Ratinov, and Bengio (2010), using CRFsuite with stochas-
tic gradient descent, and evaluating with conlleval.pl
at chunk level. We omit the |C| = 220 feature in Gener-
alised Brown at 2l because this is equivalent to the surface
form with this corpus, which is already included as a fea-
ture. Note that rolling up improves performance, even with
a large active set, and even in the presence of other state-
of-the-art features, which both already provide competitive
information.
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Figure 4: From top: Total AMI remaining for each merge
made; the first derivate of this, i.e. AMI loss; and the second
derivate, rate of AMI loss. a=1000.

Informativeness of features To explain the improved per-
formance in 3, we again evaluate the quality of the cluster-
ings in terms of AMI. Using the RCV1 corpus “cleaned”
as per Liang (2005) and with a = 2560 as per Derczynski,
Chester, and Bøgh (2015), we shear the tree for each bit-
depth in l = {4, 6, 10, 20} as per Ratinov and Roth (2009)
and others in later literature, and count the clusters gen-
erated. For each set of resultant clusters, we measure the
AMI. To compare, we extract the same number of clusters
by rolling up over Generalised Brown, and measure AMI.
Results are in Table 4.

First, observe that for l > 4, |C| < 2l. Fewer than 2l

clusters tend to be extracted by shearing because the tree is
imbalanced and some branches do not go deeply beyond 4.
Generalised Brown offers finer-grained control over the size
of the clustering than shearing because, firstly, values of |C|
that are not powers of 2 can be chosen; and, additionally, the
number of clusters returned is exactly the number intended.

Next, observe that clusters generated with Generalised
Brown always have more AMI than those from shearing,
excluding the trivial case of the first complete clustering,
a = |C|. For smaller bitdepths, intended to obtain coarser
clusterings, the difference between the methods is large—up
to 23%. The impact is dramatic at these depths because the
most expensive merges occur near the top of the tree. It is no
wonder Koo, Carreras, and Collins (2008) comment on the
difficulty of finding good shearing bitdepths. Where our pro-
posed method carefully selects the least expensive merges,
shearing completely ignores merge costs; it simply tries to
exploit the weak relation between depth and cost.
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Figure 5: AMI loss rate in the last merges of RCV1. Rate
normalised by merge sequence number to improve visibility.
a = 2560.

4.3 Event Points

During Brown clustering, AMI acts as a point measure of
clustering quality. We anticipate that language and other
datasets have some natural clusterings suggested by the data.
For example, concepts such as plurals, determiners, capital
city names and so on are often seen in certain clusters. The
effect of breaking these emergent natural clusterings may
manifest as an increase in AMI loss for a particular merge.

Recall Figure 3, which shows the AMI in the Generalised
Brown clustering as a function of the sequence number.
Figure 4 shows first and second derivates of that plot for
a = 1000, i.e., the absolute amount by which AMI changes
on each iteration of the algorithm, and the instantaneous rate
of change in AMI on each iteration, respectively.

The first derivate shows erratic behaviour before the first
complete clustering, as the changing search space at each
iteration wildly affects the cost of any merge. Subsequently
there is an accelerating curve with well-ordered AMI loss.

An intriguing phenomenon occurs in the second derivate.
Clear local peaks arise; this is seen also in Figure 5, which
illustrates AMI loss rate in the last few merges of the RCV1
dataset. These peaks represent merges that, relative to the
more stable prior state, dramatically change the AMI in the
clustering. Such merges reveal interesting event points in the
clustering of the vocabulary, at which clusters significantly
differ from the immediately preceding ones.

Rapid changes in the rate of AMI loss indicate event
points in the clustering. We propose splitting event points in
two kinds: positive, where AMI loss increases sharply, sig-
nifying an unusually expensive merge; and negative, where
AMI loss decreases rapidly, possibly indicating a cheap
merge, perhaps due to a previous merge having made clear
the similarity of two classes.

The fact these event points exist is very interesting. While
the field has intuited groupings of word types (e.g. PoS
tagsets, named entity classes), support groupings of linguis-
tic phenomena is already present in the distribution of to-
kens. That is, the linguistic structure observable in a corpus
suggests natural groupings of words, which become visible
with Generalised Brown clustering. It will be interesting to
compare results across languages and genres, and to exam-
ine the contents of groupings at these event points.



5 Conclusion
Brown clustering has recently re-emerged as a competitive
unsupervised method for learning distributional represen-
tations. However, existing feature generation from Brown
clusters is relatively naı̈ve, and coarse granularity clusterings
explore a very restricted search space. In this paper, we gen-
eralised the algorithm by decoupling the active set, which
exists for computational efficiency, from the output size. As
a result, Generalised Brown removes from any task using
Brown clusters the need to select a (perhaps non-existent)
sweet spot, in which the ideal active set size (i.e., quality)
and ideal output size (i.e., features) coincide.

The second part of the paper revisited feature generation.
We showed that the state-of-the-art shearing method, based
on path prefixes in the Brown hierarchy, sacrifices a lot of
mutual information. Simply choosing a Generalised Brown
clustering preserves much more information than a depth-l
path prefix approach, and yields more effective features.

Software for Generalised Brown clustering and roll-up
feature generation is available freely at http://dx.doi.
org/10.5281/zenodo.33758 (Chester and Derczyn-
ski 2015).
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