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Abstract—The majority of spatial processing techniques rely
heavily on approximating each group of spatial objects by their
minimum bounding box (MBB). As each MBB is compact to store
(requiring only two multi-dimensional points) and intersection
tests between MBBs are cheap to execute, these approximations
are used predominantly to perform the (initial) filtering step
of spatial data processing. However, fitting (groups of) spatial
objects into a rough box often results in a very poor approxima-
tion of the underlying data. The resulting MBBs contain a lot of
“dead space”—fragments of bounded area that contain no actual
objects—that can significantly reduce the filtering efficacy.

This paper introduces the general concept of a clipped bound-
ing box (CBB) that addresses the principal disadvantage of
MBBs, their poor approximation of spatial objects. Essentially,
a CBB “clips away” dead space from the corners of an MBB by
storing only a few auxiliary points. On four popular R-tree imple-
mentations (a ubiquitous application of MBBs), we demonstrate
how minor modifications to the query algorithm exploit auxiliary
CBB points to avoid many unnecessary recursions into dead
space. Extensive experiments show that clipped R-tree variants
substantially reduce I/Os: e.g., by clipping the state-of-the-art
revised R*-tree we can eliminate on average 19% of I/Os.

I. INTRODUCTION

Spatial data is growing at an alarming rate, prompting all
major database system vendors to add spatial extensions that
explicitly target spatial data analysis. From Oracle Spatial [1]
and IBM Informix [2] to PostGIS [3] and HyPerSpace [4], the
spatial index on which these extensions primarily rely is the
heavily researched R-tree [5], and the principle component of
the R-tree, all its variants, and in fact most spatial processing
techniques, is a minimum bounding box (MBB). So, even
minor improvements to MBBs can have broad impact.

Min. Bounding Box The MBB is the smallest axis-aligned
rectangle that encloses its d-dimensional data. Being in a con-
servative class of approximations [6], it can represent any set
of spatial objects (from simple points to complex volumetric
shapes or other MBBs). Generally, a group of spatially-near
objects are stored together (inside index nodes or buckets) and
approximated by their MBB, offering three advantages: MBBs
(i) are computed simply, with linear cost, (ii) are very compact
to store, needing only two spatial points, and (iii) are very
cheap to compare to each other for overlap/intersection. This
is critical, as MBB intersection tests are the most dominant
operation in spatial indexing: R-trees rely heavily on them
during both the building and querying phases, while many
other spatial tasks use them for filtering, e.g., traversing quad-
trees [7] or performing spatial joins [8], [9].
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Fig. 1: Performance of four R-tree variants.

Overlap, coverage, and ‘“‘dead space” The quality of spatial
data partitioning is classically measured by the overlap and
coverage of the resultant MBBs. Poor overlap (i.e., much area
spanned by multiple MBBs) decreases the filtering precision.
This is particularly crucial for R-trees [10]: if a query rectangle
intersects overlapping MBBs, the query must follow several
paths in the tree. Reducing coverage (i.e., avoiding unnecessar-
ily large MBB volume), however, is also important. Redundant
coverage increases the likelihood that a query rectangle will
intersect an MBB, independent of the likelihood of intersecting
the constituent objects. How to minimize the overlap has
been researched extensively in each new R-tree variant (R*-
tree [11], R*-tree [12], RR*-tree [13] to name a few).

In general, existing techniques minimize overlap quite well.
In Figure la, we use two real-word datasets (described in
Section V-B), including a novel and challenging brain axon
dataset, to construct four popular disk-based R-tree variants
(including the state-of-the-art, RR*-tree [13]). Indeed, on both
datasets and all four variants, just 8-30% of the area of
a node, averaged over all internal nodes, is overlapped by
two or more of its children. However, Figure 1b is less
encouraging. It instead measures what we call dead space,
i.e., the percentage of the volume of a node that does not
contain any objects. While one expects unnecessary coverage
in higher dimensions due to the curse of dimensionality, we
see a staggering amount, circa 74% and 94%, of dead space
already in these 2d (rea02) and 3d (axo03) spatial datasets.
This demonstrates the difficulty in bounding real objects such
as road networks (rea02) and brain axons (axo03) with
MBBs, even if they are easily separable.

Finally, Figure 1c illustrates that these hardly-overlapping



but mostly empty MBBs indeed have a negative ef-
fect on query performance. We query the (state-of-the-art)
RR*-tree [13] under three settings of query selectivity that
return a couple (high), about ten (medium), or roughly one
hundred (low) objects. The plot reports the fraction of leaf
node accesses—the major I/O bottleneck—that actually con-
tribute to the query result (i.e., contain at least one spatial ob-
ject within the query range). High/medium selectivity queries,
common in spatial joins [8], [9], are particularly affected; the
query intersects just dead space in 21% (2d) and 64% (3d)
of the accessed leaf nodes. For the other three R-tree variants
(not shown), the results are even more discouraging.

QOur clipping proposal Certainly, we are not the first to
observe the limitations of bounding boxes; various poly-
gons [14], [15] and conics [16]-[19] have been proposed and
compared [6], [20]. However, these are limited by: (a) the
complexity of their representation, (b) the complexity of their
intersection tests, and/or (c) the lower-bound on their dead
space imposed by their convexity.

In contrast, we propose simple, non-convex polygons ob-
tained by rectangularly clipping off the corners of MBBs (c.f.,
Figure 2 on the next page). Incidentally, the corners are the
convergence points of the dimension-wise maxima/minima of
the bounded objects and thus where much of the dead space
is concentrated. Each clip requires only one d-dimensional
point (and a d-bit flag) because the corner of the original
MBB provides the opposing corner of the rectangular clipped
area. Testing intersection with a clipped corner (we will show)
is even cheaper than the preceding intersection test with the
MBB. Finally, because the clipped corners are supplemental
to the original MBBs, we can implement the proposal as a
plugin-like addition for any R-tree variant: we store clip points
in a small, auxiliary data structure, post-process MBBs at
construction time, and minimally expand the query algorithm.

Clipping MBBs removes dead space and thereby achieves
both classic objectives of spatial data partitioning: coverage
is assuredly reduced by not representing dead space in the
corners; overlap is potentially reduced by bounding the objects
more tightly. Ideally we introduce very few clips that eliminate
most dead space. We propose two means of generating clip
points, based on the idea of Pareto optimality (i.e., sky-
lines [21] in database literature), that trade-off complexity
for pruning power. Our experiments with benchmark R-tree
queries show that these proposals reduce leaf node accesses
by 14% and 26%, while introducing a storage overhead of just
3.2% and 6.5%, respectively (averaged across seven datasets
of 2-3 dimensions and four R-tree variants). Moreover, for two
classic spatial join strategies, the Index Nested Loop Join and
the Synchronised Tree Traversal, we eliminate 46% and 18%
of I/Os, respectively (averaged across four R-tree variants).

Contributions and outline In this paper, we propose low-
overhead improvements to minimum bounding boxes (MBBs)
to improve their ability to represent complex, real spatial

objects. While Section II details related work and Section VI
concludes, our main contributions include:

¢ Introducing the general concept of clipped bounding
boxes (CBBs) along with two particular instantiations of
the concept (Section III);

o Demonstrating that our CBBs can be plugged into any
R-tree variant with a small auxiliary data structure and
minor modifications to the construction, query, and up-
date algorithms (Section 1V);

o Experimentally showing that with three-fold fewer cor-
ners, our CBBs can prune more area than the convex hull,
while providing average I/O savings of 29, 29, 27, and
19 % when plugged into the QR-tree, HR-tree, R*-tree,
and RR*-tree, respectively. In addition we are showing
that our CBBs can save up to 53% of 1/Os for the state-
of-the-art spatial join strategies when plugged into R-tree
variants (Section V).

II. RELATED WORK

The R-tree family The R-tree [5] is a disk-based multi-
dimensional index structure consisting of a hierarchy of mini-
mum bounding boxes (MBBs) which recursively enclose data
objects. Indexing and query processing with R-trees in spatial
databases have received a lot of research attention [22] and
several variants of the original approach have been proposed.
To increase robustness against different data distributions, the
R*-tree [12] incorporates an improved node split algorithm and
the removal and reinsertion of spatial objects of an overflowing
node. It employs multiple optimisation criteria at every split,
attempting to minimise the dead space and the margin in each
node as well as the overlap between nodes. The RR*-tree [13]
introduces more adaptive optimisation strategies in order to
further reduce I/O costs and enhance search performance.

Bulk loading can optimise the partitioning of data in the
R-tree during initial construction. The HR-Tree [23] uses the
Hilbert space filling curve to identify spatially close objects,
while STR [24] recursively sorts the objects along each
dimension for spatial proximity. To better handle extreme data,
the PR-Tree [25] groups all objects with extreme coordinates
in the same dimension in the same node.

All the above and many other access methods [26] operate
on MBBs and thus our proposed clipping techniques can be
applied orthogonally to boost their query performance.

Space-oriented partitioning Instead of grouping objects
hierarchically based on their location, another family of spatial
indexing methods splits space using hyperplanes into a set of
disjoint partitions that are stored flatly [27] or in a hierarchical
structure [7], [28]. To achieve good storage utilization, the hB-
tree [29] does not require that nodes are split by hyperplanes;
instead, it allows them to represent hyperrectangular regions
with hyperrectangular holes. Note that, similarly to CBBs, the
hole can be located at the corner of the node. However, in
such cases, the corner region is not a dead area, but is in
fact guaranteed to contain data objects. By definition, space-
oriented partitions do not minimally bound the enclosed data
objects and therefore contain dead space.
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Bounding objects Instead of using minimum bounding boxes
to represent a collection of objects, other geometries have been
proposed in the past. The Sphere-tree [18] is a hierarchical
structure similar to the R-tree with the exception that it uses
minimum bounding spheres. The Sphere-tree requires less
storage space than the R-tree but the computation of the
minimum bounding sphere is more expensive [30]. The SS-
tree [17] indexes multidimensional points and employs bound-
ing spheres having as center the centroid of the underlying
points for the region shape. The SR-tree [16] integrates both
bounding spheres and bounding boxes to reduce the volume
that an index node occupies and increase search efficiency.
However, the SR-tree has lower fanout (its nodes contain both
a sphere and a box) and higher creation cost compared to the
SS-tree. The eR-tree [19] is a variant of the R-tree that employs
minimum volume covering ellipsoids. Ellipsoids cover less
dead space on sparse clustered data but their advantage is
suppressed on dense data. Moreover, they cover more dead
space than polygonal alternatives [6], [20]. The P-tree [14],
another generalization of the R-Tree, uses a hierarchy of
polygon containers that are mapped into rectangles of a higher
dimension. The use of additional hyperplanes results in a better
approximation, but it increases the size of the entries (i.e.,
reduces the fanout of interior nodes). The Cell Tree [15] is
a hierarchy of nested convex polyhedra that are subspaces
of a binary space partitioning and aims to handle objects
of arbitrary shape. In contrast, our work is not proposing
an alternative geometry, as MBBs have been tremendously
successful in practice. Instead, we extend MBBs using clip
points that adhere to the same basic, rectilinear concept.

Recently, [31] tackled the same challenge, “over-coverage”
of MBBs, focusing solely on streaming observational data
where a group of (successive) points can be represented as
line segments. Our proposal is more general, supports points
(lines/planes) as well as volumetric spatial objects, and does
not imply any restrictions on the data (e.g., value-continuity
of observations).

III. ELIMINATING DEAD SPACE IN MBBS

Figure 2 gives an example that runs over the next two
sections. It depicts a set O = {01, ..., 05} of five (gray) spatial
objects and the (black) box that minimally bounds them. It is
clear that most of the space inside this MBB is not covered
by an object, but is instead “dead space.” We show in this
section how to eliminate a lot of that dead space using only
a few well-chosen points and bitmasks. These points “clip

away” corners of the MBB, producing what we call a clipped
bounding box. Section III-A introduces the general concept
and Sections III-B-III-C define two specific implementations.

A. The clipped bounding box (CBB)

High-level concept Intuitively, a lot of the dead space in an
MBB is tucked into the corners, where the most extreme values
of all the objects converge. Incidentally, the rectangular area
A adjacent to a corner is also the cheapest to represent: A, like
any box, is defined by two points, one of which is the corner
point; so, a single d-dimensional point and a d-bit flag to
identify the targeted corner are sufficient to fully characterise
A. Our proposed clipped bounding box (CBB) augments an
MBB with pairs of additional points and corner flags to clip
away excess area near the corners of the MBB. The reduction
in dead space can be quite profound. In Figure 2 for example,
one can store the point ¢ with the bitmask b = 11 to represent
the rectangle (¢, R*'), which contains no objects. If this region
was not part of the MBB, one would have an equally correct,
but more representative, bounding object. Moreover, the cost
of intersecting a query region Q) with this clipped rectangle is
low: we need only compare () to the MBB (which, anyway,
would be necessary), and then to point c.

In general, there are many choices for ¢ and we need not
select only one. Choosing the right points is, unsurprisingly,
non-trivial and thus the subject of Sections III-B-III-C. First,
however, we formalise this high-level intuition by introducing
notation and definitions.

Notation An MBB in d dimensions is a hyperrectangle,
which we denote by R = (l,u). The two points defining
R, | and wu, represent the minimum and maximum extent
of R, respectively. We express coordinates of a point p =
(p[1],...,p[d]) and the bits of a bitmask b = (b[1]...b[d]) in
array notation. The minimum bounding box (MBB) of a set of
m objects O = {01,...,05,} is the smallest possible rectilin-
ear box R = (I, u) that contains all objects in O; i.e., for each
dimension i, [[i] = min,, co 0;[i] and u[i] = max,,co 0;[i].
We frequently refer to specific corners of bounding boxes
(hyperrectangles). For hyperrectangle R a unique superscripted
bitmask b specifies the corner of interest: a set bit b[¢] indicates
that the corner maximises the 7’th dimension; i.e.,

if bli] = 1
if bli] = 0.

The four corners of R, the MBB in Figure 2, are labeled
with this notation. For example, the top-left corner is R°! and
the top-right corner is R'!. Similarly, the top-right corner of
object 07 is denoted 01! and the bottom-left corner of object

04 is denoted 0%°.

Formalisation In general, an MBB is an imperfect approx-
imation of a set of objects O, which a CBB improves. The
extra, empty space that an MBB uses to bound O we call dead
space and define as the part of R not occupied by any o; of
O (Definition 1):



Definition 1 (Dead space). Let R be the MBB of objects O =
{01,...,0m}. The dead space of R, denoted t(R), is:

Tf(R) ={p € R:VYo; € O,p ¢ o;}.

A CBB augments an MBB with extra points that we call
clip points (Definition 2). A clip point is a pair consisting of
a point p € R and an orientation mask b and has the property
that no object 0; € O occupies the space between p and its
relevant corner R®. (Observe that the space between p and R?
is exactly the MBB of the two points {p, R’}.)

Definition 2 (Clip point). Let R be the MBB of objects O =
{01...,0m} and b be a bitmask of length d. We say that
(p € R,b) is a clip point iff the area between p and R’ is
entirely dead space; i.e., if R denotes the MBB of {p, R’},
then p is a clip point iff:

Vg € R',Yo; € O,q € o;.

For example, (c,11) is a clip point in Figure 2, because
the area enclosed by the dashed blue lines is empty. On the
other hand, (0$°,11) is nor a clip point, because it would clip
away objects o4 and o5: the area between 0}° and the top-right
corner, R'!, is not entirely dead space.

We denote the volume that clip point (p,b) clips away
by Volg({p,b)). In general, we clip away several parts of
an MBB using a set of (p;,b;) pairs, but take care not to
double-count regions clipped away by multiple clip points.
That is to say, given a set of clip points P = {(p;,b;)},
Vol (P) = U, pyep Volr((pi, bi)).

This leads us to our core concept, a clipped bounding box
(CBB), that we informally introduced at the beginning of this
subsection and that we formally define in Definition 3:

Definition 3 (Clipped Bounding Box (CBB)). Given a set of
objects O, a clipped bounding box is a pair (R, P), where R
is the MBB of O and P is a set of clip points in R.

Naturally, a CBB, (R, P), is a better approximation of O
than another CBB, (R, P’), if it retains less volume; i.e.,
Volg(P) > Volg(P’). While a clip point introduces very little
overhead, a large set of clip points is cumbersome. Thus, we
only want to select < k of the clip points that we propose in
the following subsections, while still maximising Volg(P).

B. Object-situated clip points

High-level concept Given an MBB R, we can obtain good
clip points quickly by taking them from the objects O bounded
by R. Consider Figure 2 again; (a discretisation of) the set of
possible clip points is depicted by small, gray dots. For the
most part, the best clip points (i.e., the dots farthest from their
respective corners) lie on the outer surface of some object o;.
This is intuitive: the dead space arises specifically because the
MBB corner is too far from the objects, so clipping R with a
rectangle that borders an object o; will naturally improve the
approximation of O.

With respect to a corner R’, we do not consider all
(infinitely many) points on the surface of each object o; € O,

but rather just its closest corner, of. This is most likely to be a
valid clip point. In fact, if <0§’, Rb> is not a clip point, then no
point in o; can be a clip point with respect to R®. Considering,
for example, corner R'! in Figure 2, we see that (03!, R™)
is not a clip point (it would clip away part of o4 and o5), so
the entirety of o3 would also clip away part of o4 and o5 and
therefore similarly not be clip points.

We also do not necessarily consider all objects o; € O,
because we recognise that, for corner R®, the subset of
{(0%, R")} that are clip points is precisely the well-studied
concept of a skyline [21], computed over {o?}. Thus, the idea
for our object-based CBB is to compute for each bitmask b
the skyline of the M object corners {o?} and pick from those
the few points that clip away the most dead area. Thus the
clip points are all actually represented in the set of underlying
objects, O. To formalise this intuitive description, we will state
the definition of a skyline as it relates to this context.

Oriented skyline of objects The skyline [21] is based on the
concept of dominance, which is highly related to our notion of
clip points. A point p dominates a distinct point g with respect
to b if it is at least as close to R’ as ¢ on each dimension
independently. More precisely, let b4 denote a bitmask with
bit ¢ set iff p[i] © ¢[¢]. Then we have Definition 4:

Definition 4 (Dominance). Given points p and q, and bitmask
b, p dominates q w.rt. b, denoted p < q, iff-

(bpﬁq & ~b = bqu) A (bqﬁp &b= qup) N bpaﬁq # 0.

For example, given b = 00 in Figure 2, 03° <, 02° because
it is closer to R in both the 2 and the y direction. In the
context of MBBs, one could express dominance equivalently
by letting R’ denote the MBB of {q, R’} and stating that
p <p q iff p € R’. Using the same example, observe that
the point 09° indeed lies in the MBB created by the point
it dominates, ogo, and R99. The oriented skyline of a set of
points P, given orientation mask b, is simply the subset of
points p € P not dominated by any other point g € P:

Definition 5 (Oriented skyline). Given point set P and ori-
entation mask b, the skyline Sy(P) is:

Sy(P)={pe P:Aqe Pq=sp}

Considering an MBB R and a set of object corner points
P = {0t}, a pair (p € P,b) is clearly a clip point iff p €
Sp(P). If a point p & Sy (P) is dominated by some other point
q € P, then q lies in the MBB of {p, R’} which implies that
(p, b) would clip away the object from which ¢ was derived.
On the other hand, if p € S,(P), then no other point ¢ € P
lies in the MBB R’ of {p, R’}. Since P contains the closest
point to R from every object o; € O, the entirety of (p, R”)
must contain dead space. Thus, the clip points in {<o£-’, b>} are
in one-to-one correspondence with Sp,({0%}).

We see this in Figure 2. Considering corner b = 00, for
example, we obtain a skyline of {09°,09°, 03", 03°}. Point 02°
is dominated by both 03° and 0{°; meanwhile the clip point
(09°,b) would clip away part of o3 and oy4.
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clipping, given 7 objects, 0;—o7 and a range query, Q.

C. Point-spliced clip points

High-level concept We can find more aggressive clip points
by splicing the skyline points proposed in Section III-B. Recall
the possible clip points in Figure 2. Skyline point o' clips
away a lot of dead space relative to R'!, but the point c that
combines the y-coordinate of oj' with the z-coordinate of
o1l clips away significantly more dead space. In fact, ¢ clips
away the most dead space (of those that could form valid clip
points). ¢ is not an arbitrary point in R?, but a combination
of the coordinates of oi' and o}!: this splicing provides a
generative mechanism of strong clip points that may not lie
on any object at all, and comprises our second instantiation of
CBBs. It clips away much more dead space than our first CBB

proposal, but requires an expensive extra processing step.

Stairline points We define stairline points, which, intuitively,
are the points “between” skyline points, farthest from a corner
R? of the MBB. To find them, we introduce the splice point
concept, which mixes the coordinates of source points p, g
(thereby still being adjacent to child MBBs):

Definition 6 (Splice point). Given two points p and q with
MBB R, their splice point with respect to b is ¥(p,q) = RP.

Stated alternatively, ¥ (p, ¢)[¢] has value max(p[i], ¢[¢]) if
bli] is set; otherwise, it takes the value min(pl[é], ¢[¢]). For
example, c in Figure 2 is equal to ®oo(o}!, 041), i.e., takes the
smallest = and y values from its source points oi! and o}!, as
the bitmask b = 00 specifies to minimise both dimensions.

We must be careful when splicing points to not clip away
occupied area, i.e., to ensure the generated clip points are
“valid.” Producing valid clip points in 2d is straight-forward:
we can totally order all skyline points by = and then splice
each consecutive pair. However, it is non-trivial in higher di-
mensions to efficiently extract all sets of neighbouring points.

Thus, we propose an unfortunately-cubic algorithm that is
still practically reasonable given the small input sets (< M).
We generate splice points using bitmask ~b from every pair of
skyline points, some of which are invalid; to ascertain validity,
we check that no other skyline point (and thus child MBB) is
in the space that this splice point would clip away.

Definition 7 (Oriented stairline). Given a set of points P and
a bitmask b, the oriented stairline is the subset of splice points,
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Fig. 4: The physical layout of the R-tree from Figure 3a (a)
and the auxiliary structure (b) of clip points introduced in
Figure 3b. The auxiliary table is indexed by MBB id and gives
the number of and pointer to the clip points for that MBB. The
bitmask of each (in this case 2d) clip point is followed by the
two coordinate values.

{@p(p € P,q € P)},p # q that are clip points w.rt. b. A
point in the stairline is called a stairline point.

Stairline points necessarily clip away more dead space than
the skyline points p,q from which they are spliced, because
they take coordinates from both p and ¢ such that they are
farthest from the corner RP.

IV. CBB-BASED R-TREES

Section III introduced the concept of clipped bounding
boxes (CBBs) and two approaches to defining clip points for
them. Here we describe how to integrate them into arbitrary
R-tree variants. Recall that the R-tree variants vary in how
they determine the contents of their nodes, but not in their
general layout; thus, our extensions here apply to any variant.

A. Layout and structure of clipped R-trees

Figure 3 extends the example of Figure 2, contrasting a
classic MBB-based R-tree (a) with a clipped one (b). In
Figure 3a, the seven spatial objects (0;—07) are indexed using
the traditional R-tree with M = 5 and m = 2, which results
in a two-level hierarchy of MBBs. The root node (in black)
corresponds to Ry, which minimally bounds the two leaf nodes
(in green). The R-tree distributes the objects into nodes well,
as the leaves have zero overlap. The range query, (), intersects
two spatial objects: it fully covers og and it partially intersects
o7. Nevertheless, because () intersects all MBBs in the R-tree,
all three nodes must be scanned, which unfortunately includes
the node of R;, inside which @ only overlaps dead space.

The clipped R-tree, for contrast, is shown in Figure 3b. Each
of the MBBs (with corner points depicted by solid circles)
from Figure 3a is independently augmented with clip points
(depicted by hollow circles). Six clip points are introduced:
two in Ry (the black ones), three in R4, and one in Ry. While
Q still intersects Ry and Ry as they contain objects that are
within @’s range, the excess leaf-node scan of R; is averted.

Figure 4a illustrates a typical R-tree data structure. The
directory nodes (in this case just the root) contain an array
with an MBB (Ry) followed by a list of between m and M
children. For each child, its MBB and a pointer to the child
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Fig. 5: Demonstration of the overlap approximation. The
combined score of {pi,po,ps} overcounts the overlap of

{p1,p2, p3} and undercounts the overlap of {p1, ps}, but these
often correspond to the same area, ag.

node are given. The leaves contain an array with an MBB and
a list of pointers to actual objects. To clip the R-tree, we retain
this original structure exactly and augment it with the structure
in Figure 4b that contains the clip points. A directory table is
indexed by the ids of the R-tree nodes: entry 1 corresponds
to R;. It contains a length, since we adaptively determine the
variable number of clip points per node, and a pointer to an
array. Inside the array, the bitmask of the clip point is given
first and the actual coordinates of the point are given next.
The clip points are ordered by the volume that they clip away
in order to detect non-intersection as quickly as possible.

B. Constructing clipped bounding boxes

In Section III, we described two sorts of clip points, giving
rise to two different clipped bounding boxes. Here, we describe
how to compute those CBBs. In particular, we focus on the
challenging problem of selecting % clip points from a set
of choices that grows with M. We discuss this k-selection
problem first, then turn to the high-level clipping algorithm.

Selecting £ clip points Determining the optimal selection of
k clip points would incur exponential cost, because there is no
known algorithm for > 3d better than enumerating all possible
size-k subsets [32]. However, we can avoid this cost with three
reasonable simplifying assumptions: (1) each corner of a CBB
is independent; (2) the point that independently clips away the
most volume is among the k choices; and (3) if multiple points
clip away area in the same corner, the overlap of that area is
small and/or covered by the point in assumption (2).

We make assumption (1) because if clip points p and ¢
arise from different corners, they can only clip away area
that overlaps each other if there is substantial dead space. In
that case, optimality is not crucial: greedily selecting k clip
points will prune a lot of dead area, anyway. The simplification
permits linearly combining the solutions from the 2¢ corners,
rather than computing cross-corner overlap.

Figure 5 illustrates the intuition behind assumptions (2)
and (3). Three potential clip points, p;—p3, for corner R
are shown, along with the area that each would clip away,
area(p;). If we pick multiple clip points for this corner,
assumption (2), accurately in this case, asserts that py would
be in the optimal solution. Assumption (3) asserts that the
overlap in clipped area among the multiple points will be
contained in {asg, a4, as,ag} or very small. More specifically
we assume that the point clipping away the largest volume
(in this case pg) will be selected and will clip away the

Algorithm 1 Clip: (node N, k,7) — set of clip points C

1: L < empty list of clip points

2: for each bitmask b € 0... (27 — 1) do

3 P+ Sp({o?: 0; € N.children})

4:  if using stairline points then

5 for each s;,s; € P do

6: if Vs, € P, % wp(ss, Sj) Ap Sk then

7 P’ (*P/U{(D'NI,(SZ‘,SJ‘)}

8 P+ P

9:  assign scores Vp € P as in Figure 5

10.  for each p € P, with p.score > 7 x area(N) do

11: L.append({p, b))
12: return the min(k, |L|) clip points in L with highest score

overlap for all chosen points. Thus we assume that for another
pi, it will contribute area(p;) — area(p; N p2) to the overall
union. Whereas exact computation would require invoking the
exponential-cost inclusion-exclusion principle, we simply add
these scores together to approximate the clipped area.

In this example, our approach produces the exact score. This
occurs because p; and ps lie on opposite sides of pa, which
commonly happens: the point clipping away the most area is
likely to lie on the diagonal and the next best choices (for small
k) are likely to be on either side. Even when this intuition fails,
the error of approximation is bounded by the intersection of
the smaller rectangles, which itself is small.

As a last optimisation, we elect to only store clip points
that clip away an additional > 7 % of the volume; otherwise,
they increase our storage cost without having a high likelihood
of containing a query rectangle. Thus, we could end up with
fewer than the intended number of & clip points if they do not
prune much dead space, anyway.

The clipping algorithm To construct a clipped R-tree, we
apply Algorithm 1 to every tree node and store each result with
an entry in the auxiliary structure (Figure 4b). We iterate over
the corners of the MBB independently (Line 2 and assumption
1), computing for each the skyline of the object corners (Line
3). We optionally splice the skyline points (Lines 4-8) to clip
away more area. Then, we determine which clip point clips
away the most area and assign approximate scores to the rest
(Line 9 and assumptions 2 and 3). We finish processing the
corner by keeping only the clip points passing the 7 threshold
(Lines 10-11). After iterating every corner, we sort the clip
points by score and return the k highest-scoring.

C. Querying a clipped bounding box

Since CBBs use the corners of their MBBs, intersection
can be done very efficiently, as shown in Algorithm 2. Lines
3-5 transform a typical MBB intersection test into a clipping-
enabled one. Given clip points C', we simply check dominance
(Definition 4) between the corner of the query rectangle Q° €
Q) obtained by Q~¢™k and each clip point ¢ € C. (For
queries, selector is fixed to 2¢ — 1: the xor expression (@) is
equivalent to negating c.mask. Its purpose will be clarified in



Algorithm 2 Intersection Test: (R, C, @, selector) —bool
- if QN R = () then
return FALSE

1
2
3: for each c € C do

4 if Qselector@c.mask
S|

6

<c.mask ¢.coord then
return FALSE
: return TRUE

QOO R%l

11
RZ

(a) Querying the bottom node. (b) Querying the top node.

Fig. 6: Using dominance to test CBB intersections. The hollow
point gives the bitmask of the clip point (c.mask); the solid red
point shows the corner of Q (Q™~°™2K) with which to check
dominance with respect to the solid, black point (R°™2sk),

Section IV-D.) Intuitively, it is the least “competitive” query
corner that can dominate a given clip point. If any clip point
is dominated by (), then the CBB and @ are disjoint.

We query each leaf node of our running example in Figure 6.
In Figure 6a, we compare () to the first clip point, which is
paired to corner Ri'. (The clip points, recall, are sorted by the
volume-based score.) Because Q°° dominates the clip point,
relative to R1!, we know that the part of () inside the MBB
lays inside dead space and avoid scanning R;. On the other
hand, in Figure 6b, Q0 does not dominate the (sole) clip
point; so, we can conclude that () intersects the CBB of Rs.

D. Updating a clipped bounding box

An update to a memory-resident CBB is cheap, as a disk
write to persist the changes in the underlying data is always
coincident. Still, many unnecessary updates can be avoided.

First, we observe that any update that affects + MBBs can
affect at most x + 1 CBBs. Unlike with the boundaries of
MBBs, the changes to clip points do not need to propagate up
the tree, because each MBB is clipped independently. If the
last MBB change occurs at level [ of the tree, then the next
shallower level, [+ 1, is the last level at which clip points may
change, as the clip points are based on the MBBs of the level
below. Moreover, a split/merge that does not change an MBB
also does not change the corresponding CBBs.

In general, if the MBB of node n changes, we recompute
the clip points of n, because our thresholding with 7 and our
top-k ordering and selection are both distorted by the change:
one must re-examine all candidate clip points for at least one
corner, anyway. Below, we discuss how to avoid the additional
x+1’st CBB change for deletions and insertions. Modifications
are handled by deleting and then re-inserting the object.

00
Ry 0

(a) Deleting object o3. (b) Inserting object o3.

Fig. 7: Clip points before (green) and after updates (blue).
Deleting o3 creates a better clip point ¢/, but ¢ is still valid.
On insertion, the blue corner of o3 dominates ¢’ with respect
to the solid, black point, indicating that o3 invalidates ¢’

Deletions Deletions are the easier case, because they generate
new dead space; thus, we can handle them “lazily”. Figure 7a
illustrates the deletion of object o3 from our running example,
which affects the CBB, but not the MBB, of the bottom node.
Prior to the deletion, clip point ¢ is in C. After the deletion,
we could replace ¢ with ¢/, which prunes the new dead space.
However, if we continue to use clip point ¢ instead of ¢/,
we obtain accurate query results with the same pruning rate
as prior to the deletion. Moreover, a subsequent insertion (as
shown next), whether to a new object or as part of modifying
03, only needs to be handled if it intersects the dead space
pruned by the previous point c. Therefore, on deletions we
never need to change a CBB if the MBB is unaffected.

Insertions Insertions remove dead space, potentially invali-
dating our clip points; so, we handle them “eagerly”. For each
insertion, we check whether it invalidates one of our top-k clip
points. If so, we recompute the CBB. If not, we are certain
that our top-k selection is still correct, because the score of
every other candidate clip point is either lowered or unaffected
by the insertion. Figure 7b illustrates the insertion of os (had
it not been there before). Observe that ¢’ prunes away space
occupied by o3, yielding incorrect query results. This can be
detected by testing whether the blue corner 00 of 03 dominates
¢’ with respect to the black corner R{" of the MBB.

The validity test is identical to our query in Algorithm 2,
except that it selects a different corner of the “query” rectangle,
03, by fixing selector to 0 (i.e., selecting the same corner as
c.mask). Whereas a query checks whether an entire rectangle
is contained in the dead space pruned by a single clip point, an
insertion checks whether any part of a rectangle is contained in
that dead space. If the intersection test returns FALSE, then the
newly inserted object dominates the clip point (i.e., part of the
object is prunned away by the clip point) and thus is invalid.
(Inserts propagate up from the leaves, so always Q N R # ().)
If the intersection test returns TRUE, the top-k clip points are
unchanged and the CBB does not need to be updated.

V. EXPERIMENTAL EVALUATION

We incorporate our clipping algorithms from Section IV
into a variety of R-tree variants of the existing benchmark
for multi-dimensional indexes [33]. The benchmark has been
used in many spatial indexing studies (e.g., [13]). We then
evaluate query/update performance, overhead, and spatial join
performance relative to unclipped (i.e., unmodified) R-trees.



A. Environment and experimental setup

Spatial Indexes We use C implementations of four
popular R-tree variants [13], including the quadratic R-
tree (QR-tree) [5], Hilbert R-tree (HR-tree) [23], R*-tree
(R*-tree) [12], and revised R*-tree (RR*-tree) [13]. We modify
each implementation to construct clip points (as per Algo-
rithm 1) for each node prior to flushing the node to disk
and to utilise the clip points for intersection tests (as per
Algorithm 2). We configured each index using the values for
min and max node capacities (M and m) as described in [13].
We observe minimal effect from varying k and 7; they are set
to values of k = 29+ and 7 = 2.5%. (Figure 10 illustrates
the effect of k£ nonetheless, but we lack space to also vary
7.) To differentiate the two CBBs, we denote the skyline-only
approach from Section III-B as C**" and the point-splicing
approach from Section ITI-C as C*™.

Hardware All experiments use a commodity desktop with a
quad-core Intel Core i7-3770 3.4 GHz CPU, 16GB of physical
memory, and a 500GB 7200RPM hard disk. The desktop
runs Ubuntu 16.04 LTS (kernel version 4.4.0) and the code
is compiled with gcc (version 5.4.0).

B. Datasets and queries

Datasets For the main evaluation, we use seven spatial
datasets, ranging from 2-3 dimensions. Four challenging (two
real and two synthetic) datasets are taken from the exist-
ing benchmark [33]. The real datasets include: rea02 (a
2d dataset of 1888012 rectangles and points representing
street segments in California) and rea03 (a 3d dataset of
11958 999 points representing three floating point attributes in
a biological data file). The synthetic datasets are par02 and
par03 containing 1048576 2d and 3d boxes, respectively.
The objects are generated with a very large variance in size
and shape, which makes them challenging to approximate.
In addition to the above datasets, we add three new datasets
stemming from our main use case and collaboration with
neuroscientists in the Human Brain Project [34]. The datasets
contain volumetric boxes representing different spatial objects
in a 3d brain model: 2570016 segments of axons (axo003),
1288 251 dendrites (den03), and 3 858 267 neurites (neu03).

Queries We query data as in [33]. Given dataset D and
number of result objects |R| as input, the generator produces
queries originating from the dithered centers of the objects in
D. |R| object centers are chosen randomly so that the most
dense data regions are also most actively queried. For each
dataset, we produce three query profiles of varying selectivity:
QRO, QR1, and QR2 retrieve approximately 1, 10 and 100
objects, respectively, per query.

C. Results and discussion

Bounding object comparison We begin by evaluating how
well the clip points (CBB*” and CBB®™) eliminate dead
space, relative to six alternative bounding objects (studied
earlier in [6], [20]). Figure 8 illustrates each shape on our
running example. We compute minimum bounding circles

QRO  QRI QR2 | Total
QR-tree 24/44  16/29 713 16/29
HR-tree 25/42  18/30 8/14 17/29
R*-tree 21/38  15/28 7/14 14/27
RR*-tree | 15/28 11/21 4.5/9.5 10/19
Total 21/38  15/27 6.5/13 | 14/26
TABLE I: Average improvement in % I/O reduction using

skyline/stairline clipping for each R-tree.

(MBC) as per Welzl [30] and rotated minimum bounding
boxes (RMBB) by iterating the edges of the convex hull
(CH) and computing the minimum bounding box with the
same orientation as each edge. The m-corner polygons (4-C
and 5-C) are the smallest-area polygons with < m corners
that fully bound the children, computed similarly to [35].
Finally, the convex hull (CH) is computed using Graham
Scan [36]. Observe the extremes that apply in general: CH
lower bounds the dead space for all the convex polygons but
has the highest representation overhead (O(n) corners). MBC
and MBB have the lowest representation overheads (< two
points) but coarsely approximate their contents.

Figure 9 contrasts the eight bounding objects in terms of
area (left) and representation overhead (right). Following [6],
[20], we restrict to 2d datasets (just this figure), as we know of
no way to calculate minimum bounding m-corner polytopes
in higher dimensions. The simplicity with which MBC, MBB,
and CBB generalise to higher dimensions is a clear advantage.

For each dataset, we built an RR*-tree.! For each node
of the RR*-tree, we replace the MBB with a new minimum
bounding shape and measure its area. Figure 9(a) reports the
percentage of this area that is empty, averaged over all nodes,
for each bounding shape. The number of points used is re-
ported in Figure 9(b). As expected, the convex polygons prune
more dead space as the number of corner points increases.
CBB®**Y is generally competitive with 4-C using only one or
two clip points on average. (The reported cost in Figure 9(b)
includes the two corner points of the original MBB.) CBB®™,
using up to 3.4 clip points on average, outperforms even CH,
which uses on average 12.5 and 11.8 points.

Remaining dead space Figure 10 expands the previous
experiment by evaluating the coverage of CBB in all four R-
tree variants and more datasets (with some still omitted for
space?). The total height of each bar, relative to the y-axis
indicates the percentage of the MBB that is dead space; the
height of the top (clear) part of the bar indicates the fraction
of the dead space that is clipped away by the skyline (top) or
stairline (bottom) points. If the solid, lower part of the bar is
comparably short, then most dead space is eliminated.

Along the x-axis, we vary three parameters: the highest
granularity groups correspond to a given dataset; the four
groups within that are colour- and pattern-coded by R-tree
variant; at the smallest granularity, we vary k, the maximum

IThe RR*-tree gives the most pessimistic results for CBB of all variants.
2The point-only rea03 dataset essentially occupies zero volume; so, the
entire MBB is dead space at the leaf node level and the experiment is not very
informative. The results for den03 and neu03 are very similar to axo03.
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Fig. 8: Visualization of different bounding methods over the two leaf nodes from Figure 3a and their dead space (1).

(a) (b)
0 MBC =3 RMBB =1 5-C [ CBBSKY
~ 100 - MBB -~ {50 4-C-- - E=3 CH_ Z7) cBB™
S 12
g 8or o 10| H
S 2
2 6ol B Bl
© (=}
9} * 6L
© 40t
i a1
: (M N V) mik
par02 rea02 par02 rea02

Dataset Dataset

Fig. 9: Comparing different bounding methods w.r.t dead space
(left) and storage requirements (right).

number of clip points stored per node. We vary k from 1
to 2411 (je., up to twice the number of corners), although
reiterate that this is a maximum bound per node: clip points
with a score less than 7 = 2.5 % are not indexed.

Analysis We first consider broad trends across datasets. All
R-tree variants produce bounding boxes on the neuroscience
dataset (ax00 3, far right) that are mostly dead space. In fact,
for all four datasets, nodes on average contain > 60 % dead
space. The increase from the 2d synthetic par02 dataset to the
similarly generated 3d dataset illustrates the known fact that
bounding boxes become poorer approximations of their con-
tents as the dimensionality increases. Despite different packing
algorithms, the QR-tree, R*-tree, and RR*-tree produce similar
occupancy rates in their bounding boxes. This is generally
less than the HR-tree (the exception being the neuroscience
dataset where all four have extremely high dead space rates).
We observe that most of the dead space is caused by (the much
more frequent) leaf-level nodes (not shown independently),
which must bound the actual spatial objects using a rough
box; at higher levels of the tree, the MBBs more tightly bound
other MBBs. Overall, such voluminous dead space across R-
tree variants and datasets strongly motivates this research.

Turning to the ratio of clipped dead space to remaining
dead space (i.e., fraction of each bar that is filled in), we see
more variation across datasets, but consistency across R-tree
variants. It is more difficult to clip away dead space from the
street segments (rea02), which is quite intuitive: we expect
street segments to “wrap around” some of the dead space,
particularly in cities with grid patterns. Nonetheless, even on
this least promising dataset, we clip away more than a fifth of
the dead space. For the 3d datasets, we clip away more than
60%, irrespective of the packing method.

Perhaps most encouraging is the fraction of dead space
pruned by the first (ordered) clip point (i.e., at k = 1). With

just one point, 26%, 23%, 22%, and 22% of dead space is
clipped away by QR-tree, HR-tree, R*-tree, and RR*-tree,
respectively (on rea02). Since we order clip points by the
(heuristic) volume of dead space that they clip away, the
effect of each subsequently added clip point diminishes and
eventually flattens out. Nevertheless, we observe that with
k = 2¢ the CBBs still eliminate substantial portions of dead
space. This suggests that k can certainly be large enough to
produce one clip per corner. Overall, clipping with up to two
points per corner (i.e., K = 8 in 2d and k£ = 16 in 3d),
eliminates almost half of all dead space: 58%, 60%, 49%,
and 48% is clipped away in QR-tree, HR-tree, R*-tree, and
RR*-tree, respectively. Since the number of actually stored
clip points is often lower (recall 7 = 2.5%), we set k = 2¢+1
to this maximum bound in the following experiments.

To compare skyline- and stairline-based clipping, observe
that the difference lies in the fraction of the bars that are filled
in; the total height (i.e., amount of dead space) is dependent
only on the dataset and packing algorithm. It is clear, as
asserted in Section III-C, that the stairline points clip away
much more dead space, eliminating on average almost 50%
more for the same values of k.

Range Query Performance While the first experiments show
that we clip away a lot of dead space, the real objective is
to improve query performance. Removing dead space is only
useful if that is where the query rectangle intersects the MBB.
Here we evaluate how well clipping reduces 1/Os. Following
numerous studies on disk-based indexing (e.g., [13]), we
assume that internal (non-leaf) nodes are memory-resident and
measure the number of leaf-level nodes accessed as our default
I/O metric. (Later we remove this assumption.)

Figure 11 reports I/Os for stairline-based clipped R-trees.
Query selectivity decreases in the subfigures from left to right.
Within each subfigure, four vertical bars corresponding to each
R-tree variant are grouped by dataset. The bar height reports
the percentage of I/Os relative to not clipping.

Analysis We focus on stairline clipping, but similar (damp-
ened) trends apply to the skyline points. For example, sky-
line/stairline points clip away 20%/39% of RR*-tree volume,
reducing I/Os by 10%/19%, i.e., C*™ performs =~ 2x better.

On the most selective queries (a), we consistently reduce
I/0Os by > 10%, even exceeding 50% in some cases. The
gains are particularly pronounced on the neuroscience datasets
(ax003, den03, and neu03), where we save 40-50 %
of I/0Os. While the difference in the amount of dead space
clipped away in Figure 10 was relatively small between the
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Fig. 10: Average dead space per node and R-tree for skyline- (above) and stairline-based (below) clipping.

(a) QRO

QR-tree
=3 HR-tree

E=1 R*-tree

[ RR*-tree

100
80
60
40

20

Avg. #leafAcc w.r.t. original (%)
Avg. #leafAcc w.r.t. original (%)

(%)

QR-tree
=3 HR-tree

E=1 R*-tree
[ RR*-tree

(c) QR2

QR-tree
=3 HR-tree

E= R*-tree
[ RR*-tree

Avg. #leafAcc w.r.t. original

o | 5 5
par02 par03 rea02 rea03 axo03 den03 neu03
Dataset

o f 5 5
par02 par03 rea02 rea03 axo03 den03 neu03
Dataset

o i 5 | 5
par02 par03 rea02 rea03 axo03 den03 neu03
Dataset

Fig. 11: Average #leaf accesses in clipped R-trees w.r.t. their unclipped counterpart (100%) for stairline-based clipping.

HR-tree and the other R-tree variants, here we observe a much
larger difference. The RR*-tree gains somewhat less query
performance from clipping than the other variants (19% versus
27-29% as an average over all query profiles). We attribute
that to its already strong query performance (shown in [13]).

The observed performance gains diminish with decreasing
query selectivity. This is expected, as the fraction of spatial
objects that are around the query boundary decreases with
larger query ranges (i.e., lower selectivity). Nevertheless,
HR-tree and QR-tree still benefit appreciably (circa 20%) on
the rea02/rea03 and neuroscience datasets, respectively.
The RR*-tree gains relatively less than the other variants
as query selectivity decreases, and on QR2, the difference
between variants is not very pronounced.

Table I averages the performance gains of Figure 11 across
all datasets. For QRO, average relative I/Os drops to 56%, 58%,
62%, and 72% for QR-tree, HR-tree, R*-tree, and RR*-tree,
respectively. In total, clipping MBBs results in an average
reduction of 26% in I/Os, considering all datasets, query
profiles, and R-tree variants.

Update cost Next, we quantify how effective are the Sec-
tion IV-D strategies for avoiding unnecessary re-clipping of
CBBs. Recall that we never re-clip on a deletion if the MBB

is not changed, so this experiment focuses on insertions.

We first randomly choose 90 % of the input file to batch-
construct the clipped R-tree variants. Then, we execute our
insertion routine for each of the remaining 10 % of objects.
We report on the y-axis of Figure 12 the expected number
of re-clips per insertion: i.e., the number of nodes that we
re-clip divided by 0.1x the input file size. Along the z-axis,
we vary dataset and R-tree variant. Each stacked bar shows
the cause of the re-clip: at the bottom are node splits, which
always force an MBB recomputation. In the middle are MBB
changes without a node split, which force a CBB change. The
top part shows CBB changes with no corresponding change
to the MBB, i.e., when Algorithm 2 returns FALSE.

Analysis Without the Section IV-D strategy for avoiding un-
necessary re-clips, the number of CBB changes per insert
would be exactly 1.0 higher than the number of MBB changes.
However, we observe far fewer re-clips than this worst case.
Averaging across all datasets, < 0.35 of a node needs to be re-
clipped per insert, with the exception of the R*-tree (discussed
below). Generally, ~%2 the re-clips are caused by underlying
MBB changes. The challenging neuroscience datasets give the
highest re-clip rates, where we still avoid ~ 60 %.

With respect to d, the 2d datasets have lower re-clipping
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rates than their 3d counterparts (observe parOx and rea0«).
The neuroscience datasets, with long, skinny objects, have
similar re-clipping rates to rea03. Considering the R*-tree, it
consistently suffers the most re-clips, owing to its reinsertion
policy: a node split re-inserts every entry of that node; thus,
single-object inserts often cause many MBB/CBB changes.

Extra storage cost Figure 13 reports the increased storage
requirements for clipped RR*-trees (k = 29+ 7 = 2.5%).
Each bar decomposes the percentage of bytes devoted to
directory nodes, leaf nodes, and clip points. For each dataset
(x-axis), we show results for C**¥ (left) and C*™ (right). As
we only retain clip points with scores > 7, we report atop
each bar the average number of clip points that are stored.

Analysis Overall, the CBB overhead is quite low and storage
is dominated by the far more frequent leaf nodes. The storage
dedicated to clip points never exceeds 2% (2d datasets) nor
9% (3d datasets), irrespective of which method (skyline or
stairline) is used to generate them. This confirms that clip
points and internal nodes can generally be memory-resident,
as they contribute just a few percent of the total storage.

No dataset averaged all & = 29+1 clip points. As few as
6 (C**Y) and 13 (C*™) clip points are stored per node in the
3d neuroscience datasets; < 3 clip points are averaged on the
2d datasets. This reflects that some objects are often near to
MBB corners; dead space is not uniformly distributed.

C**Y produces fewer clip points than C*™ as its clip points
prune less area, often < 7. Thus, C**Y has a smaller overhead
than C™ (3-fold on rea03), but worse I/O performance.

Clipping CPU cost During construction, we recommend an
R-tree node is clipped in main memory just prior to flushing
it to disk so that the main memory cost is subsumed by that of
the disk write. Nevertheless, for completeness, we quantify the
main memory overhead for clipping. To do so, we configure
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buffer sizes for all R-trees so that they are completely memory-
resident and then measure the resultant actual CPU time.

Figure 14 reports the CPU construction time relative to an
unclipped RR*-tree (100%). Datasets vary along the x-axis.
HR-tree is generally the fastest to build (due to its bulk-
loading) and R*-tree is generally the slowest to build (due
to its forced reinsertion of items during node split). These two
unclipped variants provide context for interpreting the clipping
overhead. The shaded part (above the dashed line) of the
stacked bars for the clipped RR*-trees shows the component
of the construction time devoted to clipping. When exceeding
200%, the value is written above the bar.

Analysis As k grows exponentially with d, so too does the
overhead of CBB computation. For the spatial datasets (i.e.,
d < 3), C* adds < 7% extra computation time. C*™
clipping is more expensive, adding up to 4% and 30% of extra
computation in 2d and 3d datasets.

Spatial Join Performance We perform a join using axo03
and den03, resulting in 1985 969 pairs, using stairline points
and two join strategies: Index Nested Loop Join (INLJ) is ap-
plied when only one dataset is indexed and Synchronised Tree
Traversal (STT) is applied when both datasets are indexed [8].

Analysis In the INLJ evaluation, we build an index on the
larger dataset (axo03) and probe it with every object from
den03 (essentially one range query per den03 object). The
results mirror those of the range query experiments: clipping
reduces 1/Os by 40%, 53%, 50%, and 39% in the HR-tree,
QR-tree, R*-tree, and RR*-tree, respectively.

For the STT strategy, we recursively restrict the search space
to the intersection of the CBBs of the corresponding sub-trees
and apply dominance tests to check whether a child CBB falls
within it. We measure leaf accesses for both trees and observe
a 17%, 20%, 20%, and 16% reduction in I/Os in the HR-tree,
QR-tree, R*-tree, and RR*-tree, respectively. Note that the
obtained reduction is lower than in the case of INLJ, but STT
performs significantly better than INLJ, having a lower total
number of accesses. E.g., in the case of the RR*-tree, INLJ
with clipping incurs around 4 x 10 leaf accesses whereas STT
with clipping only around 10°. Intuitively, the intersect area
of two tree nodes in STT is larger than the intersect area of a
tree node with a single data object in INLJ and thus there is a
lower chance that it will be fully enclosed within dead space.

Scalability Experiment Our last experiment scales up the
synthetic data to 230 objects so that it exceeds our machine’s
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Fig. 15: Querying 1 billion object datasets.

16 GB of physical memory (yielding 71 and 96 GB for the
par02 and par03 RR*-tree index disk dumps, respectively,
with similar sizes for HR-tree). Starting with all indexed data
on disk and nothing buffered we measure the query time for
500 random queries on each query profile, allowing the OS to
cache paths for previously touched nodes. The average query
run times are reported in Figure 15 for each selectivity.

Analysis Both skyline and stairline CBBs boost query perfor-
mance in the HR-tree and R*-tree. Matching I/O performance
in Figure 11, C°™ clipping averages 2x as efficient as C**¥.
Interestingly, a C*™-clipped HR-tree matches (in QRO and
QR1) or even outperforms (in QR2) an unclipped RR*-tree.
In all, spatial search with CBBs, even for 1 billion objects,
reaches interactive times—200 ms or less.

VI. CONCLUSION

Minimum bounding boxes (MBBs) are ubiquitously used in
spatial indexing to represent a set of spatial objects. However,
they often enclose significant “dead space” that contains no
actual objects. This paper proposed clipping away empty
corners of MBBs with a lightweight overhead. Each auxiliary
“clip point” defines a large, empty rectangular area that can
be discarded with a single point comparison. The resultant
bounding shapes are simple but non-convex, thereby pruning
more area than previously proposed alternatives to MBBs.

We plugged our skyline- and stairline-based clipping strate-
gies into four R-tree variants of a well-known experimental
benchmark. Compared to unclipped R-trees, the (2x) more
aggressive stairline points removed > 27% of the dead space.
Irrespective of R-tree variant, this translated into =~ 26% I/O
reduction on average across all workloads. With a storage
overhead of a few percent, clipped bounding boxes are highly
effective for accelerating spatial data processing.
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