
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Lock-free Vertex Clustering for Multicore Mesh Reduction
NIMA FATHOLLAHI, University of Victoria, Canada
SEAN CHESTER, University of Victoria, Canada

Fig. 1. Mesh reduction applied to triangle meshes to reduce the number of vertices and triangles while maintaining quality

Modern data collection methods can capture representations of 3D objects at

resolutions much greater than they can be discretely rendered as an image.

To improve the efficiency of storage, transmission, rendering, and editing of

3D models constructed from such data, it is beneficial to first employ a mesh

reduction technique to reduce the size of a mesh. Vertex clustering, a tech-

nique that merges close vertices together, has particularly wide applicability,

because it operates only on vertices and their spatial proximity. However,

it is also very difficult to accelerate with parallelisation in a deterministic

manner because it contains extensive algorithmic dependencies.

Prior work treats the non-trivial clustering step of this process serially to

preserve vertex priorities, which fundamentally limits to mid-single digits

the acceleration rates that are possible for the process overall. This paper

introduces a novel lock-free parallel algorithm, P-Weld, that exposes paral-

lelismwith a graph-theoretic lens that iteratively peels away layers of a mesh

that have no remaining dependencies. Concurrent updates to shared data

are managed with a linearisable sequence of atomic instructions that exactly

reproduces the serial clustering. The resulting parallelism and improved

spatial locality yield a 3.86× speedup on a standard 14-million vertex mesh

and a 2.93× speedup on a 400-million vertex LiDaR point cloud covering

the city of Vancouver, Canada, relative to a popular open source library.

CCS Concepts: •Theory of computation→ Sharedmemory algorithms;
•Computingmethodologies→Mesh geometrymodels; • Information
systems→ Clustering.

Additional KeyWords and Phrases: lock-free algorithms, mesh simplification,

spatial clustering, multi-core parallelism

ACM Reference Format:
Nima Fathollahi and Sean Chester. 2023. Lock-free Vertex Clustering for

Multicore Mesh Reduction. In SIGGRAPH Asia 2023 Conference Papers (SA
Conference Papers ’23), December 12–15, 2023, Sydney, NSW, Australia. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3610548.3618234

1 INTRODUCTION
When one collects data to reconstruct a 3D model of an object, it

generally makes sense to collect it at the highest resolution available.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0315-7/23/12. . . $15.00

https://doi.org/10.1145/3610548.3618234

However, that resolution can be expensive to process and transmit,

especially if the discreteness of the image space maps many points

on the surface of the object to the same pixels [Low and Tan 1997].

Mesh reduction methods (surveyed by [Talton 2004]) aim to sim-

plify a mesh while still achieving visual complexity reminiscent of

the original mesh. At a high-level, there are three main approaches.

Vertex decimation [Schroeder et al. 1997] deletes single vertices

and re-tessellates the resulting hole. Edge contraction [Hoppe et al.

1993] contracts single edges into vertices and updates all edges

incident to that. In contrast, vertex clustering [Rossignac and Bor-

rel 1993] reduces a mesh by globally merging all vertices within

a pre-defined range, 𝜖 . It supports meshes of arbitrary topological

structure and, as we will show in this paper, can be effectively and

losslessly parallelised on multi-core architectures.

The vertex clustering algorithm, illustrated in Figure 2, iterates

vertices sequentially. For each unclustered vertex 𝑣 that it encoun-

ters, it constructs a new cluster with all other unclustered vertices

within a Euclidean range of 𝜖 of 𝑣 . The sequential processing is crit-

ical, because it adds determinism to the clustering and also because

the vertices are ordered by a pre-computed visual importance [Low

and Tan 1997], ignoring which significantly distorts the mesh. How-

ever, this ordering quite obviously introduces algorithmic depen-

dencies that challenge parallelisation.

One can attempt to trivially parallelise the algorithm by voxelis-

ing the space and distributing voxels to threads [Lindstrom 2000;

Rossignac and Borrel 1993], but there is no assurance that work-

load will be balanced. One can segment the input mesh among

threads [Mousa and Hussein 2021], but identifying independent

parts is not straightforward. One can index voxels in an octree and

assign leaf cells to threads [Decoro and Tatarchuk 2007] to address

workload balance and achieve good performance. However, all of

these approaches are heuristic and miss non-trivial and cascading re-

lationships near partition boundaries. To our knowledge, this paper

proposes the first exact parallel algorithm for vertex clustering.

Vertex clustering is ubiquitously supported in computer graph-

ics software. Unity [Unity Technologies 2023] refers to this as

WeldVertices; Blender [Blender 2023] provides MergeByDistance;
Modo [The Foundry 2023] contains the function VertexMerge; and
Open3D [Zhou et al. 2018] supports it as MergeCloseVertices.
We use the open source Open3D software as a baseline, which has

achieved partial parallelisation by decomposing the algorithm into

1

HTTPS://ORCID.ORG/0009-0005-5220-6187
HTTPS://ORCID.ORG/0000-0002-1065-605X
https://doi.org/10.1145/3610548.3618234
https://doi.org/10.1145/3610548.3618234

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Nima Fathollahi and Sean Chester

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

Fig. 2. An example of mesh reduction using vertex clustering method based
on a fixed 𝜖 . A cluster is formed with vertex 1 and its neighbours. The next
unclustered vertex is 3, which forms a second cluster with its neighbours.

two steps: one that builds an adjacency list in parallel using a spatial

index, and one that performs a serial clustering over that graph.

Although the construction of an adjacency list is the more expen-

sive step, the clustering is non-trivial, requiring 20-30% of execution

time and imposing an absolute lower bound of 2.7 seconds on a

standard Stanford 3D triangle mesh model in our experiments.

To parallelise this phase, we investigate the properties of the

constructed spatial graph to expose more parallelism. We then pro-

pose a method that independently maps vertices onto clusters using

atomic instructions to carefully synchronise global state. Once all

threads vote that the mapping is complete, we perform a reduction

phase to generate new clusters. We formally prove correctness of

this lock-free approach by demonstrating that updates to the global

mapping state are linearisable [Herlihy and Wing 1990].

Our experiments demonstrate a roughly 4× improvement to ver-

tex clustering when provided with an 𝜖-independent spatial index,

driven by a 20−40× improvement to the previously serial clustering

phase, when run on a server with 2 × 16 cores. Some improvement

arises before parallelism due to improved locality.

Motivated by our city-scale remote sensing project, we further

stress the algorithms with an aerial LiDAR point cloud that contains

over 400 million vertices. Given the natural error in instrumentation

and the advantage that vertex clustering is independent of any

actual mesh, it is reasonable to reduce a point cloud prior to 3D

reconstruction. We find that, even for minor reductions in vertex

count, our proposed algorithm can reduce clustering latency by over

one minute (over 3×) relative to the partially parallelised baseline.

The paper proceeds by describing and revisiting the vertex clus-

tering algorithm to more easily expose parallelism (Section 2); intro-

ducing our novel, exact, multi-core algorithm, P-Weld (Section 3);

conducting a comprehensive experimental analysis of P-Weld rela-

tive to Open3D (Section 4) and concluding the paper (Section 5).

2 (PARTLY) SERIAL VERTEX CLUSTERING
Algorithm 1 (Serial-Weld or simply S-Weld) describes vertex clus-

tering as in Open3D. ([Low and Tan 1997] describe more steps, but

they are orthogonal to this work.) S-Weld first (Lines 1-2) constructs

a new spatial graph over the same set of vertices as the input mesh,

but where an edge exists between vertices 𝑢 and 𝑣 iff the 𝐿2 Eu-

clidean distance between 𝑢 and 𝑣 is ≤ 𝜖 . Next (Lines 3-12), it iterates
through vertices by decreasing visual importance and constructs

for each unclustered vertex, 𝑢, a new cluster with 𝑢 and all its un-

clustered neighbours in the spatial graph. A representative vertex is

ALGORITHM 1: S-Weld

Input :mesh vertices ordered by grade, mesh triangles, 𝜖 ≥ 0

Output : reduced and transformed vertex set, transformed triangles

1 for 𝑢 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 in parallel with spatial index do
2 create 𝑎𝑑 𝑗𝐿𝑖𝑠𝑡 [𝑢] ← {𝑣 | 𝑣 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ∧ 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) ⩽ 𝜖 };
3 for 𝑖 = 1; 𝑖 ≤ 𝑛𝑢𝑚𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ; 𝑖 = 𝑖 + 1 do
4 𝑢 ← 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 [𝑖];
5 if u is not clustered then
6 mark 𝑢 as clustered w/ 𝑢; // new auto-increment cluster ID
7 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 ← 𝑢;

8 for 𝑣 ∈ 𝑎𝑑 𝑗𝐿𝑖𝑠𝑡 [𝑢],𝑢 ≠ 𝑣 do
9 if 𝑣 is not clustered then
10 mark 𝑣 as clustered with 𝑢;

11 shift position of 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 to new centre of mass;

12 𝑛𝑒𝑤𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠.append(𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡) ;
13 for 𝑡 ∈ 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 do
14 replace vertex IDs of 𝑡 with new representatives’ IDs using map

(a) 𝑢 = 1 first (b) 𝑢 = 4 second (c) 𝑢 = 5 third (d) 𝑢 = 7 last

Fig. 3. Illustration of the S-Weld serial clustering process reaching Line 6 of
Algorithm 1 on a toy spatial graph. Green vertices represent the centroids of
each new vertex; red vertices are already clustered when visited on Line 5.

constructed on-the-fly on Line 11. Finally (Lines 13-14), the mesh is

updated by replacing edge endpoints with corresponding clusters.

Spatial Graph Construction The set of edges in the spatial graph is

constructed in parallel as an adjacency list: a vector of length |𝑉 | in
which element 𝑖 is an unsorted vector of the ids of all vertices within

a range of 𝜖 of vertex 𝑣𝑖+1. In order to identify the nearest neigh-

bours within a given radius in R3, Open3D uses the KDTree FLANN

algorithm [Blanco and Rai 2014], a modified version of the FLANN

(Fast Library for Approximate Nearest Neighbors) library [Muja

and Lowe 2009] that returns exact results. The KDTree FLANN is

thread-safe on read: threads can use the same KDTree to populate

the adjacency list concurrently. Reusable, we assume it as an input.

Cluster Determination Figure 3 illustrates this step on a toy graph.

Each vertex is visited in descending order of visual importance

(Lines 3-4). If already clustered, it is skipped (Line 5). Otherwise,

it initiates the next new cluster (Lines 6-7) with itself and its as-

yet-unclustered neighbours in the spatial graph (Lines 8-11). An

unordered map is maintained to quickly retrieve later the cluster

of a vertex. The centre of mass (or, equivalently, some other notion

of cluster representative) for the new vertex that will represent the

cluster is adjusted as new vertices are added (Line 11). Clearly, the

number of output vertices is determined by how often Line 6 is

reached, which itself depends on the structure of the spatial graph.

2

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

Lock-free Vertex Clustering for Multicore Mesh Reduction SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

Retriangulation As final clean-up, facets are reduced by converting

the vertices of each triangle into their new representatives with the

map constructed during cluster determination (Lines 13-14).

2.1 Observations and Algorithmic Intuition
It is clear why S-Weld is difficult to parallelise without distorting

the output mesh: The strict ordering on computation fundamentally

affects which and how many vertices initiate new clusters. It also

affects which neighbours should be added to which clusters and

how the new vertices representing those clusters are repositioned.

Ignoring this changes both the number of and the position of vertices

in the output mesh. Moreover, the cluster determination phase is

linear in the size of the edge set in the spatial graph. We refer to

this algorithm as “partly” serial, because only the spatial graph

construction is parallel and the serial portion of code is notable (c.f.,

Section 4). Retriangulation seems to be embarrassingly parallel, but

it does not accelerate with the addition of threads in this design.

The challenge to parallelising the difficult cluster determination

phase of S-Weld is that we do not know a priori which vertices are

what we call centroids: those for which S-Weld will reach Line 6

of Algorithm 1. If these were all known, we could immediately

initiate and populate all clusters as separate parallel tasks and need

only to manage competition among threads for selecting which

non-centroid vertices belong to which clusters.

Recall the example from Figure 3 and consider 𝑣4: we cannot

know if it initiates a cluster until both 𝑣2 and 𝑣3 are processed and

we cannot know if 𝑣2 or 𝑣3 will initiate a cluster until we process

𝑣1. These relationships can cascade as long as the diameter of the

spatial graph. In fact, conveniently, the spatial graph is exactly the

dependency graph for this problem. In contrast, consider vertices 𝑣1
and 𝑣5: we can know that they initiate clusters as soon as we see that

they have no neighbours of lower ID, i.e., have no dependencies.

This suggests a possible approach: there exist some vertices whose

cluster does not depend on other vertices and therefore are certainly

centroids; moreover, their neighbours are certainly not centroids.

3 EXACT PARALLEL VERTEX CLUSTERING
Algorithm 2 presents Parallel-Weld (or simply P-Weld), our paralleli-

sation of S-Weld; Figure 4 illustrates it on a spatial graph. Broadly,

it follows a map-reduce style of first mapping vertices to correct

centroids, then reducing the mapped values to repositioned vertices.

More specifically, themapping phase (Lines 5-15) is a convergence

process in which parallel tasks correspond to vertices. Once a vertex

𝑣 has no unresolved dependencies (Line 9), we (conceptually) set the

corresponding task to active and have it decrement the dependency

count for all of 𝑣 ’s neighbours (Lines 11 and 14). If 𝑣 identifies itself

as a centroid because its current estimate is still itself (Line 12), it

updates the centroid estimates of its neighbours to the lesser of 𝑣 and

their current estimates (Line 13). In this way, a task becomes active

after it has been correctly clustered by its predecessors. Convergence

occurs when all tasks are marked as complete (Lines 10 and 14-15).

The number of unresolved dependencies for vertex 𝑢 is initialised

during spatial graph construction as the in-degree of 𝑢 (Line 3). The

reduction phase in P-Weld makes one serial pass over the map to

compress the range of vertex ids (Lines 16-19), then repositions

ALGORITHM 2: P-Weld

Input :mesh vertices ordered by grade, mesh triangles, 𝜖 ≥ 0

Output : reduced and transformed vertex set, transformed triangles

1 for 𝑢 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 in parallel with spatial index do
2 𝑎𝑑 𝑗𝐿𝑖𝑠𝑡 [𝑢] ← {𝑣 | 𝑣 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ∧ 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) ⩽ 𝜖 ∧𝑢 < 𝑣};
3 𝑑𝑒𝑝𝑒𝑛𝑑 [𝑢] ← | {𝑣 | 𝑣 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ∧ 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) ⩽ 𝜖 ∧𝑢 > 𝑣} |;
4 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 [𝑢] ← 𝑢;

5 while shouldContinue, i.e., at least one thread votes not to halt do
6 sync barrier
7 shouldContinue← false // thread-local copy reduced on Line 5
8 for 𝑢 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 in parallel do
9 if 𝑑𝑒𝑝𝑒𝑛𝑑 [𝑢] = 0, i.e., 𝑢 is now a source then
10 decrement 𝑑𝑒𝑝𝑒𝑛𝑑 [𝑢] to mark it as done;

11 for 𝑛 ∈ 𝑎𝑑 𝑗𝐿𝑖𝑠𝑡 [𝑢] do
12 if 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 [𝑢] == 𝑢, i.e., 𝑢 is a centroid then
13 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 [𝑛] ← min(𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 [𝑛],𝑢) CAS;
14 atomically decrement 𝑑𝑒𝑝𝑒𝑛𝑑 [𝑛];
15 shouldContinue← true;

16 for 𝑢 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 do
17 if 𝑢 is a centroid then
18 Create a cluster and assign it an auto-increment ID

19 Add 𝑢 to the cluster created by its centroid, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 [𝑢]
20 for 𝑐 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 in parallel do
21 Calculate the representative and append it to 𝑛𝑒𝑤𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠

22 for 𝑡 ∈ 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 in parallel do
23 replace vertex IDs of 𝑡 with their new representatives’ IDs

vertices (Lines 20-21) and retriangulates the mesh (Lines 22-23) in a

data-parallel fashion. Section 3.2 describes an async improvement.

Observe that tasks have writes that are not thread-local, namely

decrementing the dependency counts of neighbour vertices (Line 14)

and also improving their centroid estimate (Line 13), exemplified in

Figure 11. The decrements are critical, because they determine both

when to terminate the centroid determination and whether tasks

should be active. This is managed with intricate sequencing.

A task 𝑖 becomes active once all other tasks on which it de-

pends announce that it can be active by collectively decrementing

𝑑𝑒𝑝𝑒𝑛𝑑 [𝑖] down to 0. An active task 𝑖 immediately signals that it is

complete by decrementing 𝑑𝑒𝑝𝑒𝑛𝑑 [𝑖] down to −1. It then broadcasts
updates to centroid estimates for all its neighbours 𝑛 before notify-

ing them that they can become active by decrementing 𝑑𝑒𝑝𝑒𝑛𝑑 [𝑛].
Because of the sequencing of these reads and writes, task 𝑖 cannot

begin until all updates to its centroid estimates have been completed.

Task 𝑖 votes for another round of convergence if it has neighbours

(Line 15). Decrements use atomic fetch-and-add instructions with

relaxed memory constraints, as only the total number of writes, not

their order, is important (except the last one, which algorithmically

cannot be initiated until after the others anyway).

S-Weld, given its iteration order, directly assigns to each vertex 𝑛

the first centroid, i.e., smallest centroid vertex ID, that neighbours 𝑛.

We are able to break this ordering by assigning the minimum vertex

ID of all centroids that visit 𝑛 (Lines 12-13). We manage the updates

to the centroid estimates with an atomic compare-and-swap (CAS)

loop. If centroid𝑢 neighbours𝑛, it takes a snapshot of 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 [𝑛]. If
that snapshot is less than𝑢, there is nothing to be done and we break

the CAS loop. Otherwise, we perform an atomic compare-and-swap

3

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Nima Fathollahi and Sean Chester

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

(a) P-Weld initialisation (b) 𝑣1, 𝑣2, and 𝑣5 are active (c) 𝑣3 and 𝑣4 are active (d) only vertex 𝑣6 is active (e) only 𝑣7 is active

Fig. 4. Walkthrough of P-Weld’s centroid determination on a toy spatial graph with a trace of data structures 𝑑𝑒𝑝𝑒𝑛𝑑 and 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 . Each sub-figure
corresponds to a while loop iteration. Green vertices and table rows are centroids discovered so far. Vertex 𝑣𝑖 becomes active when 𝑑𝑒𝑝𝑒𝑛𝑑 [𝑖] = 0.

to update 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 [𝑛] to 𝑢 if the snapshot is still valid. If that fails,

we loop back and take a new snapshot. This CAS loop cannot fail

more than 𝑑𝑒𝑝𝑒𝑛𝑑 [𝑛] − 1 times, because each failure indicates that

some other thread has successfully reduced 𝑑𝑒𝑝𝑒𝑛𝑑 [𝑛] on Line 14

and therefore beat this thread to complete the CAS loop on Line 13.

The ABA problem common to CAS does not apply because the

value monotonically decreases. This use of CAS also guarantees

that centroid estimates have been synchronised to main memory

before the atomic decrements are initiated.

3.1 Algorithm Correctness
We prove correctness in three steps: 1) run on a single thread, P-Weld

produces the same result as S-Weld; 2) run in parallel, the algorithm

has liveness, i.e., at least one task completes on every iteration of

convergence; and 3) run in parallel, the algorithm has safety, i.e., no
task completes based on incorrect or incomplete information.

Lemma 3.1 (S-Weld Eqivalence). When run with one thread,
P-Weld and S-Weld produce the same result

Proof. We prove this by induction on program state: both algo-

rithms begin the same way and induce the same state transitions.

Let Line 8 of P-Weld iterate through vertices serially in the same

order as S-Weld and consider 𝑣1. In S-Weld, neither it (Line 5) nor any

of its neighbours (Line 9) have been clustered; so, they are all marked

as clustered with 𝑣1 (Lines 6 and 10). In P-Weld, 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 [1] = 0

and 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 [1] = 1 by initialisation (Lines 3-4). Task 1 is therefore

active on Line 9 and passes the Line 12 condition. All neighbours

𝑛 have 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 [𝑛] set to 1 (Line 13). This value can never change,

because 1 is the minimum in the dataset, and therefore, all 𝑛 will fail

their respective Line 12 conditions–i.e., they have been marked as

clustered/non-centroids. So, both S-Weld and P-Weld have created a

cluster of 𝑣1 and its neighbours without modifying other vertices.

For the inductive step, consider 𝑣𝑖 with all 𝑣1, . . . , 𝑣𝑖−1 processed
equivalently between S-Weld and P-Weld. If 𝑣𝑖 is not a centroid,

S-Weld skips it on Line 5 and P-Weld skips having any effect on

other vertices on Line 12. 𝑣𝑖 is not re-clustered because Line 6 is not

reached in S-Weld and P-Weld tasks only alter the centroid estimates

of other vertices. If, instead, 𝑣𝑖 is a centroid, S-Weld updates all as-

yet-unclustered vertices to cluster 𝑖 (Lines 8-10). P-Weld updates

the centroid estimate of all neighbours to the min of their current

estimate and 𝑖; however, as all 𝑗 < 𝑖 have been processed correctly,

Line 13 only changes the centroid estimate if no prior vertex 𝑣 𝑗

already marked the neighbour as clustered. Therefore, S-Weld and

P-Weld have made the same changes to cluster membership.

As a final note, P-Weld compresses cluster ids and repositions

vertices in straightforward post-processing to match S-Weld. □

Lemma 3.2 (Liveness). On every iteration of the P-Weld while loop,
at least one task completes (and therefore the algorithm terminates)

Proof. We noted already that the CAS cannot loop indefinitely.

Assume for the sake of contradiction that no task completes on

this iteration, i.e., 𝑑𝑒𝑝𝑒𝑛𝑑 [𝑢] ≠ 0,∀𝑢, and the algorithm has not

terminated, i.e., ∃𝑣, 𝑑𝑒𝑝𝑒𝑛𝑑 [𝑣] > 0. Let 𝑣 be the smallest such 𝑣 ; then

all vertices 𝑣𝑖 < 𝑣 had 𝑑𝑒𝑝𝑒𝑛𝑑 [𝑖] < 0 prior to this iteration. But that

requires each task 𝑖 to reach Line 10, which implies that they reached

Line 14. Since they have 𝑣 in their adjacency list, per Line 2, at least

𝑑𝑒𝑝𝑒𝑛𝑑 [𝑣] vertices must have atomically decremented 𝑑𝑒𝑝𝑒𝑛𝑑 [𝑣]
on previous iterations. That value cannot be strictly positive. □

Lemma 3.3 (Safety). Global state is correct for all complete tasks

Proof. Global state is maintained in two vectors: 𝑑𝑒𝑝𝑒𝑛𝑑 and

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 , which are both initialised without inter-thread communi-

cation. A vertex 𝑢 is complete when it broadcasts 𝑑𝑒𝑝𝑒𝑛𝑑 [𝑢] = −1.
Prior to this linearisation point, it only reads 𝑑𝑒𝑝𝑒𝑛𝑑 [𝑢] and is not

active until all lower ID neighbours have atomically decremented

𝑑𝑒𝑝𝑒𝑛𝑑 [𝑢] (Line 14); they cannot do this until they complete up-

dates to 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 [𝑢]. Therefore, when𝑢 broadcasts 𝑑𝑒𝑝𝑒𝑛𝑑 [𝑢] = −1,
𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 [𝑢] has considered all lower ID centroids. □

3.2 Implementation Considerations and Improvements
A few details can improve P-Weld performance. Using a consistent,

static schedule for the parallel for loops increases affinity between

data and cores, particularly the adjacency lists. This improves tem-

poral locality. It also maximises order in the computation so that,

within the workload of an individual thread, execution order resem-

bles that of S-Weld as much as possible.

Accelerating the serial reduction is limited by data movement.

However, the subsequent code does not depend on it; so, it can be run

asynchronously on one threadwhile the remaining threads complete

the repositioning and retriangulation. We experiment with a P-Weld-

Async version that tracks which centroids are discovered by which

threads, uses a parallel prefix sum [Blelloch 1990] to determine write

locations for each centroid, and completes the memory-intensive

repositioning asynchronously.

4

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

Lock-free Vertex Clustering for Multicore Mesh Reduction SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

Table 1. Datasets used in the experiments below and merge radii (𝜖 values) corresponding to 0.1%, 1.0%, 10%, and 50% mesh reductions

Dataset name Abbr # vertices # triangles Merge radii (𝜖)
Stanford Bunny Bun 35,947 69,451 [2.800e-4, 4.280e-4, 9.965e-4, 1.209e-3]

Vellum Manuscript Manu 2,152,840 4,305,679 [6.050e-2, 9.240e-2, 0.1000022, 0.10054]

Thai Statue Stat 5,000,000 10,000,000 [5.000e-2, 7.500e-2, 0.10023, 0.1795]

Lucy Lucy 14,027,872 28,055,742 [8.000e-4, 7.000e-3, 7.200e-2, 0.5009]

Vancouver LiDaR Van 461,200,229 0 [0.014, 0.028, 0.067, 0.18]

4 EMPIRICAL VALIDATION
In this section, we evaluate the performance of our proposed P-Weld

algorithms. The mesh that we generate, recall, is identical to prior

work (e.g., [Zhou et al. 2018]); the contribution is in being able to

do this in parallel. The reduced meshes are rendered in Figure 1 to

illustrate visual quality, but we focus on algorithmic aspects here.

4.1 Experiment Design
4.1.1 Software. 1 We compare three algorithms: S-Weld (state-of-

the-art), P-Weld (our proposed technique), and P-Weld-Async (an

optimisation to P-Weld that runs the only non-allocation-related

sequential code in P-Weld asynchronously).

To prepare S-Weld, we isolate the MergeCloseVertices() func-
tion from version (0.17) of the Open3D open source library [Zhou

et al. 2018], as well as all of its dependencies, to create a stand-alone

C++ application. This includes its spatial data structure (KDTree

FLANN) whose construction we isolate in a separate method and

whichwe pass as an additional parameter to MergeCloseVertices()
by const-ref. We wrap this function call with a std::chrono timer.

We implement P-Weld and P-Weld-Async as two C++17 functions

with the same signature as S-Weld that are also wrappedwith a timer.

The OpenMP library is used for parallelism and asynchronicity

within the fork-join model is implemented with a single nowait
region and a decremented thread count in the subsequent omp for.
We calculate the average time of twenty function invocations.

Because these methods perturb a mesh in-place, each cold-cache

trial is on a new copy of the mesh but reuses the spatial index.

4.1.2 Datasets. For the main experiments, we use standard, bench-

mark triangle meshes from the Stanford repository.
2
These are

described in Table 1. The four meshes are selected to vary the size of

the mesh to facilitate a scalability study. We determine via manual

binary search the values of 𝜖 that lead to a consistent reduction in

the number of vertices in the mesh so that we can standardise ex-

periments across meshes. In general, we focus on the largest dataset,

Lucy, and the two extreme mesh reduction rates, 0.1% and 50%. To

study the generalisability of our results, we use a subset of large

meshes from the Thingi10K repository [Zhou and Jacobson 2016].

We also evaluate performance on a 400-million vertex point cloud

taken by concatenating ten adjacent tiles of the Open Vancouver

dataset [City of Vancouver 2019], centred around Canada Place (a

region of high density). Though using a point cloud, not a mesh, this

more extreme experiment demonstrates that vertex clustering can

deterministically reduce a point cloud prior to 3D reconstruction.

1
Available at: https://github.com/nimaft97/parallel-vertex-clustering

2
http://graphics.stanford.edu/data/3Dscanrep/

Fig. 5. Scalability with respect to mesh reduction rate (left: Bun; right: Lucy)

4.1.3 Environment. Experiments are conducted on a server run-

ning Gentoo 2.6 with 2 × Intel(R) Xeon(R) Gold 5218 processors @

2.30GHz, providing a total of 32 cores (64 hyper-threads). Software is

compiled using gcc 9.3.0 with architecture-specific optimisations

enabled. Meshes and point clouds are saved to a file and rendered

on a 2022-vintage commodity laptop using MeshLab.

4.2 Results and Analysis
4.2.1 Overall Comparison. We begin by simply studying execution

time relative to inputs for each algorithm. Figure 5 shows the effect

of the merge radius, 𝜖 , on performance for the smallest and the

largest dataset. The radii are set for each dataset such that they

eliminate 0.1%, 1%, 10%, and 50% of vertices, respectively. Each

algorithm uses as many hardware threads as it can (𝑡 = 64), except

that P-Weld does not use hyper-threading on Bun (explained later).

Additional datasets (Manu and Stat) are shown in Figure 10.

Observe first that the trends are quite consistent. The P-Weld

algorithms provide about a 4× improvement relative to S-Weld

across a range of mesh sizes and reduction rates. As more of the

mesh is reduced, there is a gently-sloped, linear degradation in

execution time common to all methods. This mostly arises from the

increased cost of the spatial range queries, though it also increases

the number of neighbours that each vertex visits during clustering.

As can be observed by the 𝑦-axis values, the larger meshes take

longer to reduce, as predicted by the asymptotic complexity of the

algorithms. The Lucy dataset requires about 200× longer than Bun.
Handling larger meshes can clearly benefit from acceleration.

The asynchronous repositioning of vertices generally improves

performance by about 15%, illustrating that the latency can be largely

hidden. However, this is sensitive to the reduction rate. Reposition-

ing iterates over deleted vertices, while mesh retriangulation iterates

over retained vertices. As more of the mesh is reduced, the relative

cost of these methods shifts. When half of the vertices are removed,

retriangulation can be too fast to hide the repositioning latency.

5

https://github.com/nimaft97/parallel-vertex-clustering
http://graphics.stanford.edu/data/3Dscanrep/

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Nima Fathollahi and Sean Chester

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

Fig. 6. Speedup relative to running single core (Lucy, .1% & 50%). The red
shaded region indicates theoretically possible speedup for S-Weld

Fig. 7. Parallel performance of clustering phase (Lucy, .1% & 50%)

The subsequent experiments add more nuance to this analysis.

4.2.2 Parallel Performance. In the prior experiment, we assumed

the use of as many cores as is useful. Here, we study how effectively

the algorithms make use of those additional cores. Figure 6 shows

the ratio of execution time for each algorithm run on 𝑡 versus 1

cores, using the larger Lucy dataset and the two extreme values of

𝜖 . Other datasets are shown in Figure 12. The red shaded region

shows speedups within the theoretical limit to parallel acceleration

of S-Weld, calculated as the ratio of total single-threaded execution

time to that of S-Weld’s serial region. We can see that it is higher

for the larger 𝜖 value because the construction of a denser spatial

graph takes more time, thereby increasing the ratio of time spent in

the parallel region relative to the sequential clustering phase.

The speedup of both P-Weld versions exceeds this theoretical limit

of S-Weld alreadywith 4-8 cores. This is consistently observed across

datasets and reduction rates in Figure 12 as well, except for the small

Bun dataset (explained later). By 16 cores, the P-Weld algorithms

more than double the parallel speedup that S-Weld can achieve on

Lucy. On smaller 𝜖 , the async version outperforms with the addition

of a second processor (𝑡 = 32), likely because it exposes an extra form

of parallelism that is more noticeable as execution times decrease.

On Lucy, we see more improvement with hyper-threading (i.e., on

64 logical cores), suggesting that the computation was still memory-

bound and benefitted from an ability to hide memory latencies. As

the mesh size decreases, so too does the benefit of hyper-threading;

on the small Bunny mesh, it materially degrades performance.

In Figure 7, we look closer at our novel contribution, i.e., the

clustering phase. It shows the speedup, per core count, of the P-

Weld versions relative to the always-single-threaded S-Weld. This

data is specific to Lucy; other datasets can be seen in Figure 13.

Table 2. Hardware event counts for single-threaded execution

Metric Bun (.1% reduction) Lucy (.1% reduction)
Instructions 129.5M 107.8M 64.4B 51.5B

CPI 0.50 0.48 0.56 0.54

Cycles Stalled 11.2M 10.9M 10.1B 7.7B

↫

Any Mem 7.1M 7.4M 6.9B 4.5B

↫

L1D 2.0M 2.3M 3.4B 1.6B

↫

L2 1.6M 1.7M 2.5B 0.9B

Algorithm S-Weld P-Weld S-Weld P-Weld

First, observe that there is already a 6-7× improvement on a single

core: this is investigated in the next experiment. On 64 cores, we

observe a 44× speedup (including the earlier 6-7×) when 𝜖 is small

and a 17× speedup when 𝜖 is large. At 𝜖 = .0008, only two iterations
of the while loop are required to converge, but at 𝜖 = .5009, four

iterations are required. On denser spatial graphs, we expect fewer

source nodes and for the diameter to increase, correlating with an

increased number of rounds required to converge.

4.2.3 Single-Threaded Performance. In the previous experiment, we

observed that P-Weld outperforms S-Weld already on a single core;

for the clustering phase, the difference is 6.3 − 7.3× on the larger

Lucy dataset.We investigate in Table 2 whether this can be explained

by locality by measuring cache-related hardware event counters

with the Linux perf utility. Specifically, we measure instructions

retired (as a measure of work), cycles per instruction (CPI) as a

measure of implementation performance, and the number of cycles

stalled while requests are outstanding. Note that our machine has

an inclusive cache; so, an outstanding data request to L2 includes

an outstanding request to the L1 data cache.

We obtain values for these metrics by running the entire applica-

tion, including spatial index construction, once and then subtracting

from that the values from a run that excludes a call to the P-Weld or

S-Weld function. Comparing across program launches introduces

some imprecision, but the counters themselves are already imprecise

and we only report two to four digits of precision.

Observe first that S-Weld (on one core) generally performs 20-

25% more instructions than P-Weld, evidence that P-Weld is work-

efficient. CPI is consistent for both algorithms and datasets, with

roughly two instructions retired every cycle; so, instruction counts

can be compared between algorithms. Observe also that on the

smaller dataset (Bun), there is not much difference in stalls between

the algorithms; however, on the larger dataset (Lucy), S-Weld experi-

ences more than twice as many L1 data cache stalls than P-Weld and

over 70% of those stalls appear to access LLC/L3 or main memory.

Since the range queries are performed similarly in both algorithms,

the differences probably arise mostly from the clustering phase.

This comes as some surprise, because P-Weld requires two itera-

tions of the vertex set to converge in this case and also synchronises

in main memory with atomic instructions. However, to manage

locality and concurrent access, P-Weld exclusively uses vectors and

static execution schedules. This ensures that threads are mapped

consistently to the same data elements in separate parallel regions.

On a single core, this appears to reduce instruction counts and cache

6

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

Lock-free Vertex Clustering for Multicore Mesh Reduction SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

Fig. 8. Time spent in phases of computation (Lucy, .1% & 50%)

misses because the data structure is more compact and nearby data

accesses are not hashed to different cache lines. The effect is not

observed on Bunny, because its 36K vertices only require 850KB

anyway and this machine has 1.375MB of cache per core.

As a secondary note, although the retriangulation phase is embar-

rassingly parallel for both algorithms, parallelisation only acceler-

ates it in P-Weld. Table 2 suggests why: this stage is memory-bound

in S-Weld but those latencies can be hidden somewhat in P-Weld,

due to the different approaches to mapping vertices to clusters.

4.2.4 Fine-Grained Profiling. Vertex clustering consists of a series

of steps, some of which are more effectively parallelised. In Figure 8,

we provide a break-down of time spent in each step and compare

them at 𝑡 = 1 and 𝑡 = 64 (logical) cores. The intent is to see empiri-

cally if any sub-components of the computation limit parallelism.

S-Weld is decomposed into two phases: the parallel construction

of a spatial graph that involves repeated range queries and the al-

location and population of an adjacency list; and serial clustering
that completes everything else. For P-Weld, we furthermore decom-

pose clustering into: parallel mapping which assigns a centroid to

every vertex; serial reduction that combines all vertices into newly

repositioned cluster representatives; and parallel retriangulation
that adjusts mesh edges to fit the new vertices. For P-Weld-Async,

the reduction is furthermore decomposed into a parallel prefix sum

calculation (not shown; too fast), an asynchronous repositioning
of vertex centroids, and parallel retriangulation. Due to the asyn-

chronicity, retriangulation is included as part of repositioning time.

Observe first that, despite parallelising the spatial graph construc-

tion effectively (the blue bar), S-Weld is inherently limited by the

large percentage of time spent in serial clustering (the pink bar), as

we noted with the red shaded region in Figure 6. This sets a lower

bound of 2.7 seconds that cannot be overcome with parallelism. We

also observe that the clustering phase is much faster in P-Weld and

P-Weld-Async, even at 𝑡 = 1, as discussed in Section 4.2.3.

P-Weld also has a serial sub-component of clustering, the reduc-

tion phase. At 𝑡 = 64, this dominates the remaining execution time

for clustering. Of those 200 milliseconds, nearly half are spent on

allocation, which is very difficult to address. P-Weld-Async is able to

hide some of this latency, and completes the entire clustering in 67

milliseconds. We conclude that the clustering phase no longer limits

multi-core parallelism for the vertex-clustering approach to mesh

reduction and suspect that further improvements could consider

amortising the cost of range queries over repeated mesh reductions.

Fig. 9. Scalability and profile for LiDAR point cloud reduction (.1%)

4.2.5 City-Scale LiDAR Point Cloud Reduction. Our final experi-
ments stress the algorithms with a 460M-vertex point cloud. It dis-

advantages the P-Weld variants, because there is no retriangulation

phase, but represents an interesting use case for heavy reduction.

Figure 9 repeats the experiments of Sections 4.2.1 and 4.2.4 on

Van, using 64 cores. Observe that P-Weld-Async reduces execution

time from over 1.5 minutes to about 30 seconds, relative to S-Weld,

at a 0.1% reduction intensity. It outperforms P-Weld by 10%, even

without the retriangulation phase to hide the latency of reposition-

ing vertices, as it parallelises the reduction phase better. S-Weld

degrades more rapidly with 𝜖 than on Bun or Lucy, illustrating its
memory-boundedness. When reducing 50% of vertices, the P-Weld

variants are over 2.5 minutes faster. This represents a sizeable sav-

ings, especially if one wants to run different values of 𝜖 .

We see again that it is Amdahl’s Law that limits S-Weld; the

clustering phase that is parallelised in this paper requires oneminute

in S-Weld and makes up two thirds of its execution time on 64 cores.

4.2.6 Generalisability. Figure 15 shows scalability on 456 meshes

from the Thingi10K repository [Zhou and Jacobson 2016]: all meshes

with |𝑉 | ≥ 100𝐾 except 41 with which we experience preprocessing

errors. We create three overlapping workloads based on mesh size

and show distributions of datasets based on observed speedup.

Figure 15a illustrates the percentage of datasets for which P-Weld

(left) and P-Weld-Async (right) are slower than S-Weld, less than 20×
faster, and more than 20× faster on 32 cores, respectively. P-Weld

performs best with async, on large meshes, and with low reduction

rates. Figure 15b shows similar results for parallel scalability: over

half of datasets see a ≥ 4× speedup when async reduces < 50%.

5 CONCLUSION
Vertex clustering is a fundamental mesh operation ubiquitously

supported by computer graphics software. We introduced a novel,

lock-free parallel algorithm, P-Weld, that can accelerate vertex clus-

tering on multi-core architectures without introducing heuristic

error. Using carefully sequenced atomic operations on global state,

P-Weld converges in line with the dependencies of the sequential

algorithm that have been explicitly exposed.

In a comprehensive empirical evaluation, we demonstrated that

our proposed algorithm can achieve a roughly 4× speedup on 64

logical cores relative to Open3D across a range of datasets and mesh

reduction intensities. This is driven by a 20 − 40× speedup in the

clustering phase that we novelly parallelise. As the number of ver-

tices reaches hundreds of millions, we showed that the performance

improvement offered by P-Weld continues to grow.

7

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Nima Fathollahi and Sean Chester

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

REFERENCES
Jose Luis Blanco and Pranjal Kumar Rai. 2014. nanoflann: a C++ header-only fork of

FLANN, a library for Nearest Neighbor (NN) with KD-trees. https://github.com/

jlblancoc/nanoflann.

Guy E. Blelloch. 1990. Prefix Sums and Their Applications. Technical Report CMU-CS-

90-190. School of Computer Science, Carnegie Mellon University.

Blender. 2023. Blender Software. https://github.com/blender.

City of Vancouver. 2019. LiDAR 2018. https://opendata.vancouver.ca/explore/dataset/

lidar-2018/information/.

Christopher Decoro and Natalya Tatarchuk. 2007. Real-time mesh simplification using

the GPU. 161–166. https://doi.org/10.1145/1230100.1230128

Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition

for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12, 3 (1990), 463–492.

https://doi.org/10.1145/78969.78972

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.

1993. Mesh optimization. In Proceedings of the 20th annual conference on Computer
graphics and interactive techniques. 19–26.

Peter Lindstrom. 2000. Out-of-Core Simplification of Large Polygonal Models. In

Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH ’00). ACM Press/Addison-Wesley Publishing Co., USA, 259–262.

https://doi.org/10.1145/344779.344912

Kok-Lim Low and Tiow-Seng Tan. 1997. Model Simplification Using Vertex-Clustering.

In Proceedings of the 1997 Symposium on Interactive 3D Graphics (Providence, Rhode
Island, USA) (I3D ’97). Association for Computing Machinery, New York, NY, USA,

75–ff. https://doi.org/10.1145/253284.253310

Mohamed Mousa and Mohamed Hussein. 2021. High-performance simplification

of triangular surfaces using a GPU. PLOS ONE 16 (08 2021), e0255832. https:

//doi.org/10.1371/journal.pone.0255832

Marius Muja and David Lowe. 2009. Fast Approximate Nearest Neighbors with Auto-

matic Algorithm Configuration. VISAPP 2009 - Proceedings of the 4th International
Conference on Computer Vision Theory and Applications 1, 331–340.

Jarek Rossignac and Paul Borrel. 1993. Multi-resolution 3D approximation for rendering

complex scenes. (01 1993), 455–465. https://doi.org/10.1007/978-3-642-78114-8_29

William Schroeder, Jonathan Zarge, andWilliam Lorensen. 1997. Decimation of triangle

meshes. SIGGRAPH Comput. Graph. 26 (06 1997), 65–70. https://doi.org/10.1145/

133994.134010

Jerry O. Talton. 2004. A Short Survey of Mesh Simplification Algorithms.

The Foundry. 2023. Modo Software. https://www.foundry.com/products/modo.

Unity Technologies. 2023. Unity Software. https://github.com/Unity-Technologies.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing

Models. arXiv preprint arXiv:1605.04797 (2016).

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. 2018. Open3D: A Modern Library for

3D Data Processing. arXiv:1801.09847 (2018).

8

https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann
https://github.com/blender
https://opendata.vancouver.ca/explore/dataset/lidar-2018/information/
https://opendata.vancouver.ca/explore/dataset/lidar-2018/information/
https://doi.org/10.1145/1230100.1230128
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/344779.344912
https://doi.org/10.1145/253284.253310
https://doi.org/10.1371/journal.pone.0255832
https://doi.org/10.1371/journal.pone.0255832
https://doi.org/10.1007/978-3-642-78114-8_29
https://doi.org/10.1145/133994.134010
https://doi.org/10.1145/133994.134010
https://www.foundry.com/products/modo
https://github.com/Unity-Technologies

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

Lock-free Vertex Clustering for Multicore Mesh Reduction SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

Fig. 10. Scalability with respect to reduction rate (left: Manu; right: Stat)

(a) Updating centroids of neighbours (b) Decrementing 𝑑𝑒𝑝𝑒𝑛𝑑 [𝑖]
Fig. 11. Potential data races addressed by the use of CAS and atomic adds

Fig. 12. Speedup relative to running single core (top: .1%; bottom: 50%; left: Bun; centre: Manu; right: Stat)

Fig. 13. Parallel performance of clustering phase (top: .1%; bottom: 50%; left: Bun; centre: Manu; right: Stat)

9

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Nima Fathollahi and Sean Chester

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

Fig. 14. Time spent in phases of computation (top: .1%; bottom: 50%; left: Bun; centre: Manu; right: Stat)

P-Weld P-Weld-Async

(0, 1] (1, 20] (20,∞]Speedup (×)

(a) Speedup of P-Weld and P-Weld-Async on 32 cores in clustering phase
relative to S-Weld

P-Weld P-Weld-Async

(0, 1] (1, 4] (4,∞]Speedup (×)

(b) Parallel Speedup of P-Weld and P-Weld-Async on 32 cores relative
to 1 core

Fig. 15. Percentage of 456 datasets from Thingi repository on which a given speedup range is observed. Each subfigure varies the percentage of mesh vertices
that are reduced from 0.1% (top group) to 50% (bottom group). Within each group, we report three subsets of Thingi meshes–those with ≥ 100K, ≥ 200K, and
≥ 1M vertices–456 meshes, roughly half of those, and then the eight largest. Each bar reports the distribution of datasets by the speedup achieved.

10

	Abstract
	1 Introduction
	2 (Partly) Serial Vertex Clustering
	2.1 Observations and Algorithmic Intuition

	3 Exact Parallel Vertex Clustering
	3.1 Algorithm Correctness
	3.2 Implementation Considerations and Improvements

	4 Empirical Validation
	4.1 Experiment Design
	4.2 Results and Analysis

	5 Conclusion
	References

