
Template Skycube Algorithms for Heterogeneous
Parallelism on Multicore and GPU Architectures

Kenneth S. Bøgh
Aarhus University, Denmark

ksb@cs.au.dk

Sean Chester
NTNU, Norway

sean.chester@idi.ntnu.no

Darius Šidlauskas
EPFL, Switzerland

darius.sidlauskas@epfl.ch

Ira Assent
Aarhus University, Denmark

ira@cs.au.dk

ABSTRACT
Multicore CPUs and cheap co-processors such as GPUs cre-
ate opportunities for vastly accelerating database queries.
However, given the differences in their threading models, ex-
pected granularities of parallelism, and memory subsystems,
effectively utilising all cores with all co-processors for an in-
tensive query is very difficult. This paper introduces a novel
templating methodology to create portable, yet architecture-
aware, algorithms. We apply this methodology on the very
compute-intensive task of calculating the skycube, a materi-
alisation of exponentially many skyline query results, which
finds applications in data exploration and multi-criteria de-
cision making. We define three parallel templates, two that
leverage insights from previous skycube research and a third
that exploits a novel point-based paradigm to expose more
data parallelism. An experimental study shows that, relative
to the state-of-the-art that does not parallelise well due to
its memory and cache requirements, our algorithms provide
an order of magnitude improvement on either architecture
and proportionately improve as more GPUs are added.

1. INTRODUCTION
Modern, affordable, highly-parallel co-processors such as

general purpose graphics processing units (GPUs) may vastly
accelerate database servers; how to incorporate GPUs into
query processing is thus a very active area of research [6].
However, the prominent approach of scheduling queries to ei-
ther the CPU or the GPU misses the opportunity to exploit
all parts of a heterogeneous database server for really ex-
pensive data management tasks. We aim for a “cross-device
parallelism” in which all devices (i.e., multiple CPU chips
and multiple co-processors) contribute proportionately to
the result. If a) each GPU can produce results as efficiently
as the CPU cores by minimising excess instructions and b)
the CPU cores reach comparable throughput to the GPUs,
then, combined, one can obtain a significant speed-up over

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14 - 19, 2017, Raleigh, NC, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3035962

Flight Numbers Price Duration Arrival
f0 860→485→4759 $ 120 17 hr 12.20
f1 1264→661 $ 148 12 hr 09.00
f2 860→3655 $ 169 13 hr 08.20
f3 1260→659 $ 186 3 hr 21.25
f4 1258→659 $ 196 5 hr 21.25

Table 1: Five selected flights from point A to B. Flights
f0-f3 offer appealing trade-offs, but f4 is not in the skyline:
it is more expensive, longer, and no earlier to arrive than f3.

either architecture. Developing non-naive algorithms that
fully utilise both multicore and GPU architectures is quite
challenging, however, given their different threading models
and mechanisms for hiding latencies (see Section 2.3).

Our approach is hardware-aware in the hot spots: we first
define abstract parallel template algorithms (Section 4) that
define a high-level hardware-oblivious strategy for exposing
parallelism. Each template specifies hooks where the pri-
mary parallel processing occurs. We then define concrete
specialisations for each architecture (CPUs in Section 5;
GPUs in Section 6) that implement the hooks. The special-
isations permit designing for specific hardware differences,
such as the limited state available to each GPU thread and
the necessity for cache-consciousness on the CPU. As a re-
sult, our algorithms can run on a specific architecture by
using just that specialisation, or we can distribute the par-
allel processing tasks across all physical CPU cores and GPU
devices by using both architecture-specific specialisations.

We apply this approach to the NP-hard task [31] of com-
puting a skycube [30, 41], which is the materialisation of
2d − 1 skyline query results. Briefly (see Section 2.2), the
skyline operator [5,11] selects from a dataset only those tu-
ples that express some appealing trade-off of attributes. For
example, to choose a cheap, quick, early-arriving flight from
the options in Table 1, a user need not see flight f4: it arrives
at the same time as f3, but takes longer and costs more. Tu-
ples that are no better, relative to some distinct competitor
tuple, on any single attribute (such as f4 relative to f3) are
said to be dominated and removed by the skyline operator,
thereby reducing the decision space for the user.

Unfortunately, skylines lose selectivity as the number of
attributes increases. Many of the points may be included
because they have good values on attributes of no interest
to a particular user. For a business traveller unconcerned by

http://dx.doi.org/10.1145/3035918.3035962

a price range of only $ 70, flight f0 in Table 1 is clearly un-
appealing: it is dominated by (both slower and later than)
f1 and f2 with respect to duration and arrival time. Thus,
one often projects the data into a relevant subset of the at-
tributes (i.e., subspace) to compute the skyline. The skycube
is the materialised skyline in all possible projections.

Although a compute-intensive task, the only parallel sky-
cube algorithm is a distributed version [36] of the older
“bottom-up” Orion algorithm [34]. Yet, skycube materi-
alisation is suited to shared-memory parallelism: datasets
are typically memory-resident on a single device, and data
points are repeatedly compared to each other in different
subspaces; so, comparison results should be reused [22,24,31]
and communicated between cores. Moreover, the state-of-
the-art sequential algorithm, QSkycube [22,24] is compute-
bound. However, as QSkycube is a very memory-intensive,
pointer-based, tree-traversal algorithm, a CPU parallel ver-
sion does not remain compute-bound: cores start competing
for limited L3 cache. A GPU version is difficult to envision.

We introduce three parallel skycube templates with ac-
companying CPU and GPU specialisations. Our experimen-
tal evaluation (Section 7) analyses the templates, both at a
high level (i.e., execution time) and an architectural level
(i.e., hardware counters). When deployed cross-device on
our entire heterogeneous ecosystem (2 CPU sockets and 3
Nvidia GPUs from 2 generations), our template that exposes
the most data parallelism accelerates skycube construction
by > 150×. Notably, the generality of our template design
promotes extension to other heterogeneous systems.

Contributions and outline This paper introduces a novel
template-specialisation methodology to target distinct shared-
memory architectures, which is applied to the NP-Hard [31]
problem of computing skycubes [30, 41]. After introducing
background material (Section 2) and detailing related work
(Section 3), but before concluding (Section 8), we:

• Outline three templates for exposing shared-memory
parallelism in skycube computation (Section 4);

• Give architecture-specific template specialisations for
multicore CPUs (Section 5) and GPUs (Section 6); and

• Evaluate the relative advantages of the parallel strate-
gies with high- and hardware-level metrics (Section 7).

2. BACKGROUND AND PRELIMINARIES
This section introduces notation (Section 2.1), formally

defines skycubes (Section 2.2), and provides background con-
text on multicore and GPU parallelism (Section 2.3).

2.1 Notation: point sets and bitmasks
The standard notation for skycubes (c.f., [22,24,31]) is to

denote the dataset as a set P of n points1 over a set D of
d dimensions. Subspace skylines (defined in Section 2.2) are
computed for each subspace projection, specified as a subset
of D. We, too, denote the dataset as a set, P , using array
notation for points: p = (p[d − 1], . . . , p[0]). However, not
all of our algorithms are structured as iterations over the
subsets of D; so, we instead adopt a bitmask notation for
subspaces that fits better for all of our algorithms.

We represent each subspace by a bitmask δ in which the
i’th bit is set iff the subspace includes the i’th dimension.

1Points implicitly have ids, so can be otherwise indistinct.

For example, the business traveller viewing Table 1 is inter-
ested in the two-dimensional subspace δ = 3, corresponding
to {Duration, Arrival}. |δ| denotes the number of active
dimensions in subspace δ (i.e., the number of bits set). Gen-
erally speaking, δ′ is a subspace of δ iff (δ & δ′) = δ′ (i.e., all
bits set in δ′ are also set in δ), necessitating that |δ′| ≤ |δ|.

Following [2,8,21,23,42,43] and for the sake of point-based
partitioning (described in Section 2.2), we also denote with a
bitmask the per-dimension relationship between two points.
Bit i of Bp⊕q is set iff p[i]⊕q[i]. For example, given f0 and f1
in Table 1, Bf0≤f1 = 100, Bf1≤f0 = 011, and Bf0=f1 = 000.

Finally, following [4], we overload B to also denote a per-
subspace membership relation; e.g., Bf1∈S = 1110100 de-
notes that flight f1 is in subspace skylines for δ ∈ {7, 6, 5, 3}.
(Note that B is shifted right by 1, since δ = 0, the empty
subspace, will not be used.)

2.2 Skycubes and subspace skylines
As a skycube is a set of subspace skylines and a skyline is

a set of non-dominated points, we begin by defining domi-
nance. A point q is dominated by a distinct point p if there
is no dimension i on which q[i] is better than p[i].Then point
p is clearly better than point q. In terms of our notation,
and applied to subspace δ, p dominates q iff all bits of δ are
set in Bp≤q

2 but some bit of δ is not set in Bp=q:

Definition 1 (Subspace Dominance [5]). Given points p, q
and a subspace 0 < δ < 2d, we say p dominates q in δ,
denoted p ≺δ q, iff (Bp=q & δ) 6= δ and (Bp≤q & δ) = δ.
Moreover, we say p strictly dominates q in δ, denoted p ≺≺δ q,
iff p ≺δ q and (Bp=q & δ) = 0 (i.e., (Bp<q & δ) = δ).

We verify that f1 ≺ f0 in subspace δ = 011, since Bf1≤f0

& 011 = 011 and f1[i] 6= f0[i], ∀i. Moreover, f3 strictly
dominates f4 in subspace δ = 110 (i.e., f3 ≺≺6 f4) but merely
dominates f4 in δ = 111 (i.e., f3 ≺7 f4, but f3 6≺≺7 f4).

Subspace and extended skylines are then defined as the set
of points that are not subspace or strictly dominated:

Definition 2 (Subspace Skyline [5, 30]). Given P and 0 <
δ < 2d, the skyline of P in δ, denoted Sδ(P), is the subset:
Sδ(P) = {q ∈ P : @p ∈ P, p ≺δ q}. Similarly, the extended
skyline [37] of P in δ is: S+

δ (P) = {q ∈ P : @p ∈ P, p ≺≺δ q}.

For example, the skyline of Table 1 in subspace δ = 3 is
S3(P) = {f1, f2, f3}, since f0 is dominated in δ = 3 by f1
and f2 and f4 is dominated by f3. The extended skyline,
S+
3 (P) also includes f4, because although f3 ≺011 f4, they

share a common arrival time. Subspace skylines are more
selective than the skyline. The extended skyline, unlike the
skyline, of δ has the key property of necessarily containing
the (extended) skyline of all subspaces of δ [37]. In other
words, the extended skyline can be used as a smaller input
than P for computing skylines and skycubes.

The skycube is then the materialisation of the subspace
skyline for all subspace projections:

Definition 3 (Skycube [30,41]). The skycube of P is a ma-
terialised map from each subspace 0 < δ < 2d onto Sδ(P).

Skycube representations Figure 1 illustrates the sky-
cube for the flight data (Table 1) under two separate rep-
resentations, the lattice and the HashCube [4]. The lattice
(Figure 1a) is a common data cube data structure and is

2WLOG, we assume that smaller values are better.

S4 : {f0} S2 : {f3} S1 : {f2}

S5 :
{f0, f1, f2}

S6 :
{f0, f1, f3}

S3 :
{f1, f2, f3}

S7 :
{f0, f1, f2, f3}

(a) Lattice

f0 f1

f3

f2

f0

f3

f2

f1

h1

h0

0
1
2

7
9
10
11

(b) HashCube [4]

Figure 1: Skycube representations, constructed from Table 1

used in all existing skycube algorithms. For each subspace
δ, a flat array stores the point ids for Sδ(P). The sub-
spaces may be ordered as an array or, as in Figure 1a, with
pointers between each subspace and its immediate super-
spaces. The drawback of the lattice is its redundancy: here,
each id is stored 4 times for 7 subspaces. Skycube-specific
compression techniques [18, 34, 39, 40] can be applied to a
fully-constructed lattice to reduce its redundancy.

The HashCube [4] (Figure 1b; reviewed in Appendix B.1)
stores each point p based on Bp6∈S . The bitmask is split into
32-bit “words” that are hashed independently; thus, a point
id is stored once per 32 subspaces. The relevant difference
is that the HashCube is defined with respect to each point
p (its bitmask, Bp6∈S), whereas the lattice is defined with
respect to each subspace δ (its skyline, Sδ(P)).

Point-based partitioning Recent shared-memory sky-
line algorithms [2, 8, 21, 23, 42, 43] avoid explicit point-to-
point comparisons using transitivity with respect to a com-
mon “pivot” point. Appendix B.2 reviews this. Briefly, a
quad tree partitioning of P (e.g., in Figure 3) naturally pro-
vides “pivot” points: two nodes in the tree have common
ancestors which serve as pivots. The two nodes can be com-
pared explicitly dimension-by-dimension, i.e., an exact dom-
inance test (DT), or by simply comparing their respective
relationships to their common ancestors, i.e., a mask test
(MT). A DT loads up to |δ| floats for each point, whereas
an MT only requires one, lessening the burden on the mem-
ory subsystem and improving cache hit ratios. However, a
DT is required, anyway, if an MT is inconclusive.

2.3 Architecture considerations
When a memory load is issued, a latency is incurred until

the load completes. Given the speed of compute resources
relative to memory, latencies are inevitable in many ap-
plications where memory loads cannot be easily predicted,
particularly as more cores compete for a fixed amount of
shared cache. Latencies starve compute throughput because
operands are not available in registers when instructions are
ready, so both CPUs and GPUs have mechanisms to “hide”
them. Designing algorithms with these mechanisms in mind
is necessary to achieve parallel scalability and full hardware
utilisation. Correspondingly, we briefly review some of these
mechanisms and other pertinent architecture specifics.

Utilising cache A primary way to reduce latencies is to
read from lower levels of cache. The CPU has a deep, multi-
level cache hierarchy and sophisticated prefetchers to load
data speculatively into cache before it is needed. The L1

and L2 caches are local to each core, whereas L3 is local
to a socket; so, threads compete for and/or cooperate in
L3 cache. The large globally-shared main memory incurs
non-uniform access times per core (i.e., NUMA), since not
all cores reside on the same socket. While the best way
to reduce the number of latencies is to eliminate unnec-
essary loads, using smaller data structures can reduce the
high-latency traffic that crosses the intersocket link and the
competition for L3 cache. Ensuring that algorithms are pre-
dictable increases the success rate of the prefetchers.

Each GPU, on the other hand, has one uniform, globally-
shared main memory (called global memory) with very high
bandwidth and very high latency (connected to the CPU via
PCIe3). Data can be loaded from global memory through
three separate L1 caches, two of which are faster because
they only permit read-only data; the other is directly ad-
dressable. The L2 cache is very small relative to the CPU
and there is no L3 cache. Thus, it is particularly important
to fully utilise every cache line using coalesced reads; i.e.,
consecutive loads should access physically consecutive val-
ues on the same cache line. Coalesced reads can improve
memory throughput eight-fold (for 4-byte values on a 32-
byte cache line) since only one eighth of the loads goes to
global memory. Data structures with linear layouts that are
traversed sequentially lead to coalesced reads.

Threading model GPUs and CPUs have different thread-
ing models. CPU threads are autonomous, fast (3.0+ GHz),
and complex with out-of-order execution, branch prediction,
and several layers of data prefetching. High independence
among instructions (i.e., instruction-level parallelism, ILP)
gives a CPU core flexibility in each cycle to find instructions
with operands available in registers. The CPU also hides la-
tencies with hyper-threading, which alternates the context
of two threads on each core so that the ratio between mem-
ory and compute speeds is halved. Algorithms with easy-
to-predict conditional statements have better branch predic-
tion, and therefore throughput. AVX2-enabled CPUs have
8-wide SIMD (single-instruction-multiple-data) lanes; so, a
register can concurrently apply the same operation to eight
32-bit values (i.e., leverage data-level parallelism, DLP).

GPU threads are comparatively slow (≈ 1.1 GHz) and
step-locked in batches of 32 (called warps) that always ex-
ecute the same instruction. The threads in a warp should
avoid branch divergence: disagreement on conditional state-
ments serialises execution, with some threads evaluating one
side of the condition while the others wait before the roles
are reversed. They have a limited (configurable) amount of
state: a small, fixed number of registers and shared L1/tex-
ture cache is available. Using too much state per thread
permits fewer concurrent threads, sacrificing throughput.
The GPU hides (very long) latencies by switching thou-
sands of contexts, depending on which have instructions
with operands ready; so, one should expose substantial DLP
to create far more contexts than there are physical resources.

3. RELATED WORK
GPUs have been used to accelerate query processing in

both industry [27, 28] and academia [6, 15, 16, 32, 33]. How-
ever, these works mainly focus on scheduling query operators
to either the CPU or the GPU, while only two [15, 32] con-
sider cross-device parallelism. OmniDB [15] partitions data
horizontally and invokes hardware-oblivious OpenCL oper-

ator implementations on each partition. Pirk et al. [32] use
the GPU to filter the result on the most significant bits of
each data value and the CPU to refine the result using the
entire data value. Our work, on the other hand, proposes
maximising the concurrent utilisation of both architectures
by sharing data structures and parallel tasks between the
devices and defining hardware-conscious specialisations.

Skycubes and lattice-traversal algorithms were introduced
independently by Yuan et al. [41] and Pei et al. [30], whose
insights were later combined [31]. The bottom-up strat-
egy [41] begins with low-dimensional subspaces and exploits
that Sδ′ ⊆ Sδ, ∀δ′ ⊂ δ in a breadth-first traversal. So,
only points not in some such δ′ must be explicitly verified
with DTs. The top-down strategy [30,41] begins with high-
dimensional subspaces and, making accommodations for du-
plicate values, uses parent cuboids as input for their direct
successors. The TDS algorithm [41] reuses partial results
of a divide & conquer algorithm whereas the Skyey algo-
rithm [30] reuses sort computations from parent cuboids.
Both showed top-down to be substantially faster than bottom-
up. The Orion algorithm [34] traverses bottom-up anyway
to compress the lattice by only recording each point p in
the lowest-dimensional subspaces in which it is not domi-
nated. Veloso et al. [36] give a distributed version of Orion.
Kailasam et al. [19] transform the values in each dimension
into unary ranks to which they apply binary operators to
derive the skycube. QSkycube [22, 24] improves TDS by
replacing the divide and conquer algorithm with the more
efficient BSkyTree point-based partitioning method [21,23].

Tao et al. [35] introduce the SUBSKY method to an-
swer ad-hoc subspace skyline queries without materialisa-
tion. It iterates a B-tree that organises points by their L∞
distance to an assigned anchor point, using the property that
points cannot be dominated by those with larger distances.
The algorithm does not perform well for d > 5 [18]. The
SKYPEER algorithm [37] handles ad-hoc subspace skyline
queries over peer-to-peer networks by communicating the ex-
tended skyline (Definition 2) between peers. Rather than full
materialisation, Jin et al. [18] construct a subspace skyline
index based on maximum partial dominating spaces.

The lattice can be too large for skycube construction [24].
To compress it, the closed skycube [34] splits subspaces into
equivalence classes within which points are not duplicated.
The compressed skycube [39, 40] defines minimal subspaces
(MSs) and builds a bipartite membership graph from points
to MSs to remove redundancy, but only scales to d ≤ 6 [4,18].
The former requires an inefficient bottom-up strategy; the
latter, like the MSIndex [18], cannot be employed until the
entire lattice is known (so the memory consumption re-
mains). Skylists [41] compress cuboids in a depth-first man-
ner while the HashCube [4] compresses them breadth-first.

There are no single-node parallel skycube algorithms, but
skylines can be computed on FPGAs [38], GPUs [1, 2, 10],
and multicore CPUs [3, 8, 9, 12, 13, 17, 20, 26, 29]. For the
CPU, PSkyline [17, 29] is a naive divide-and-conquer algo-
rithm that distributes the data to each core, independently
computes a local skyline, and then merges the results. AP-
Skyline [26], APS [20], and PPPS [20] extend this approach
with better data partitioning; the former two are based on
spherical coordinates and the latter, hyperplane projections.
VSkyline [9] orthogonally proposes using SIMD registers to
accelerate DTs, which are available on modern multicore
machines. Scalagon [12,13] constructs a partial order of data

values and traverses the resultant partial order lattice to pro-
duce the skyline, which is effective when the number of dis-
tinct values for each attribute is low. Hybrid [8] applies tiling
and point-based partitioning. For the GPU, SkyAlign [2]
applies a statically-defined quad tree approach, whereas the
GNL [10] and GGS [1] algorithms focus on throughput with
the latter first sorting the data. A detailed study [3], subse-
quent to this work, evaluates the performance characteristics
of SkyAlign and GGS when ported to multicore platforms.

The point-based partitioning skyline algorithms [2, 8, 21,
23, 42, 43] vary primarily in how they define their trees.
OSP [43] is recursive and uses a random skyline point as a
pivot for each sub-partition. BSkytree [21, 23] is also recur-
sive, but selects as pivot the skyline point with the smallest
scaled L1 distance from the origin. VMPSP [42] and Hy-
brid [8] are recursive, using the median of each dimension
to construct virtual pivot points, with the latter building a
two-level tree in tiled batches to support multi-threading.
The SkyAlign [2] algorithm also uses medians and quartiles,
but defined globally (rather than recursively) to create more
predictable tree traversals that minimise branch divergence.

4. PARALLEL SKYCUBE TEMPLATES
This section describes our template methodology (Sec-

tion 4.1) and then presents three template algorithms that
each expose parallelism in a unique way (Sections 4.2-4.3).

4.1 Introduction to template algorithms
Template methodology Shared-memory data parallelism
distributes a dataset horizontally across cores; then each
core efficiently computes a function over every datum in its
subset, perhaps using shared data structures to reduce com-
putations or memory loads. As the number of cores scales
up, each core processes a smaller subset, thereby finishing
sooner. Shared-memory task parallelism distributes a par-
allel task across cores. As the number of cores scales up, so
too does the number of concurrent tasks. We aim to exploit
all available co-processors in the system—to fully utilize the
data and task parallelism that can be exposed by a mod-
ern heterogeneous machine. The principal challenge of this
heterogeneous parallelism is the apparent paradox in con-
structing an algorithm that is sufficiently general to work
on both GPUs and CPUs yet exploits specific architectural
considerations that are vital to maximising performance.

Our objective is to use only the general parallel strategy
to define static, read-only, shared data structures that are
communicated across sockets and PCIe connections (i.e., be-
tween devices or NUMA nodes), whereas state (i.e., thread-
local data structures) depend specifically on architecture.
Similarly, we aspire that architecture influences the control
flow within the parallel work task, but the parallel strat-
egy defines the overall control flow of the algorithm in an
architecture-oblivious manner. We define our template al-
gorithms to precisely and procedurally describe the shared
structures and the overall control flow, but declaratively de-
scribe the work to be parallelised.3 A declarative hook de-
fines what function should be applied to which data, but not
how that function should be implemented. The template is
therefore abstract until the sub-algorithms are defined (i.e.,

3Our templates resemble the Template Method design pat-
tern [14], except that our templates remain abstract and we
specialise towards architectures rather than subclasses.

Algorithm 1 Single-thread-single-cuboid (STSC)

Input: A set of points P
Output: The skycube of P as a lattice,L
1: L,L+ ← empty lattices (vector of vectors)
2: L[2d − 1]← S2d−1(P) and

L+[2d − 1]← S+

2d−1
(P) \ S2d−1(P) in parallel

3: for lattice level l = d− 1, . . . , 1 do
4: for all subspaces δ, with |δ| = l in parallel do
5: parent← argminδ′:|δ′|=l+1 |L[δ′]|+ |L+[δ′]|
6: L[δ]← Sδ(L[parent]

⋃
L+[parent]) and

L+[δ]← S+
δ (L[parent]

⋃
L+[parent]) \

Sδ(L[parent]
⋃
L[parent])

7: return L

specialised) for (a) concrete architecture(s), which specifies
the thread-local data structures and control flow. In this
way, we produce a shared-memory algorithm that uses mul-
tiple architectures, but for which the majority of processing
time is spent in architecture-specific specialisations.

Whereas general, portable algorithms may lack the archi-
tecture awareness necessary for performance and architecture-
specific algorithms may interface poorly with each other in
a heterogeneous environment, we design directly for the het-
erogeneity without forgoing architecture awareness.

Skycube template overview We present three varied
approaches to parallel skycube construction. The first two
(Section 4.2) define task-parallel hooks based on the insights
of the lattice-traversal-based approaches that characterise
most existing skycube literature [22, 24, 30, 34, 36, 41]. The
third (Section 4.3) adopts a novel paradigm: The algorithm
iterates data points rather than subspaces, as in [19], but
computes for each point p the bitmask Bp∈S . This pro-
duces data-parallel hooks that expose significantly more par-
allelism at the expense of more thread-local state (although
not the prohibitive amount required in [19]).

4.2 Lattice-traversal-based templates
The state-of-the-art (sequential) approach in literature [22,

24, 30, 41] constructs skycubes by iterating the lattice top-
down, i.e., in the order 〈S7,S6,S5,S3,S4,S2,S1〉 in Fig-
ure 1a. Compared to traversing the subspaces bottom-up,
which requires scanning the full dataset 2d−1 times, the ex-
tended skylines of immediate superspaces can be used as a
reduced input set for each cuboid computation; e.g., S4 can
be produced from just the three points in S+

6 or S+
5 . More-

over, data structures that are built to produce one cuboid,
say S6, can be re-used in subsequent cuboids, say S4 or S2.

We expose task parallelism in the top-down lattice traver-
sal: One can compute multiple cuboids concurrently or one
can use a parallel algorithm for each individual cuboid com-
putation. The former we call single-thread-single-cuboid (Sec-
tion 4.2.1) since each cuboid is computed single-threadedly;
the latter we call single-device-single-cuboid (Section 4.2.2).

4.2.1 Single-thread-single-cuboid (STSC)
Parallel strategy Figure 2a illustrates the control flow
of the top-down lattice traversal template, STSC, and Algo-
rithm 1 outlines the pseudocode. The general idea is to ex-
ploit the natural independence among cuboids on the same
level of the lattice. Each cuboid computation is an atomic
parallel task, and an entire level of the lattice (indicated by

S7

S6 S5 S3

S4 S2 S1

(a) STSC

S7

S6 S5 S3

S4 S2 S1

(b) SDSC

Figure 2: Control flow of the lattice-traversal-based tem-
plates. Zigzags represent synchronisation points and circles
represent the concurrent tasks. STSC (a) computes concur-
rent single-threaded cuboids; SDSC (b) serially computes
each cuboid with a parallel algorithm on a single device.

the circles and Line 3) is launched concurrently. For each
cuboid δ, STSC computes both the extended skyline, L[δ],
and the set of points needed to construct the skyline of δ,
L+[δ] (Lines 2 and 6). Synchronisation occurs after each
level |δ| to ensure that the minimum-sized extended skylines
(Line 5) are ready to use as input for level |δ| − 1.

Hook Task parallelisation comes on Line 4, where each
thread is assigned an independent cuboid δ and should then
compute Sδ and S+

δ (Line 6) using the globally shared set of
now-read-only extended skylines for level |δ|+1. Specialising
the hook for some architecture x requires merely to use a
well-chosen single-threaded skyline algorithm for x.

Discussion STSC is our most coarse-grained skycube tem-
plate. The parallel tasks are long (an entire cuboid com-
putation) and synchronisation is infrequent (once per lat-
tice layer). Whereas parallel algorithms typically introduce
some overhead (thread management or extra computations
to improve throughput), specialisations of STSC can avoid
introducing that overhead by potentially using a sequential
skyline algorithm for each cuboid. Also, STSC is our only
template that clearly still applies in settings where no par-
allel algorithm yet exists (e.g., metric space [7]).

On the other hand, the number of concurrent parallel
tasks is limited by the width of the current lattice layer,
which is troublesome on low-dimensional datasets (where
the maximum lattice width is small) or highly parallel ar-
chitectures (where hundreds of tasks are necessary to avoid
starving the device’s resources). In fact, on some highly par-
allel architectures, such as the GPU, there is no notion of a
single-threaded algorithm; so, this template cannot be spe-
cialised for that device nor achieve cross-device parallelism.
Furthermore, STSC does not use shared memory meaning-
fully; so, the threads are strictly in contention for resources.
As each task accesses a different (although potentially over-
lapping) part of the dataset, the shared L3 cache becomes a
scarce resource and threads eject each other’s cache lines.

4.2.2 Single-device-single-cuboid (SDSC)
Parallel strategy Figure 2b illustrates the control flow
of SDSC in relation to that of STSC and Algorithm 2 out-
lines its pseudocode. The general idea of this template is to
exploit the existing research on parallel skyline algorithms.
The differences from STSC are minor but of conceptual sig-
nificance: One again conducts a top-down lattice traversal,
but each cuboid δ is assigned to an entire device where Sδ
and S+

δ are computed with a parallel algorithm. If k devices

Algorithm 2 Single-device-single-cuboid (SDSC)

Input: A set of points P
Output: The skycube of P as a lattice,L
1: L,L+ ← empty lattices (vector of vectors)
2: L[2d − 1]← S2d−1(P) and

L+[2d − 1]← S+

2d−1
(P) \ S2d−1(P) in parallel

3: for lattice level l = d− 1, . . . , 1 do
4: for all δ, with |δ| = l on parallel devices do
5: parent← argminδ′:|δ′|=l+1 |L[δ′]|+ |L+[δ′]|
6: L[δ]← Sδ(L[parent]

⋃
L+[parent]) and

L+[δ]← S+
δ (L[parent]

⋃
L+[parent]) \

Sδ(L[parent]
⋃
L[parent]) in parallel

7: return L

are used, then k cuboids are concurrently computed, but
only on the same layer of the lattice (as in STSC). Thus,
an individual specialisation can capitalise on the data par-
allelism within each cuboid computation, while the general
template exposes cross-device task parallelism.

Hook Although we retain some parallelism on Line 4 by
parallelising across devices, the hook occurs on Line 6, where
we exploit the well-known data parallelism in skyline com-
putation [1, 2, 8, 10]. To specialise the hook for architecture
x, one can use the state-of-the-art parallel algorithm for ar-
chitecture x—e.g., [8] on multicore, [2] on GPUs, or [38] on
FPGAs—again using the globally-shared now-read-only ex-
tended skylines from the previous level as a smaller input.

Discussion The strength of SDSC is that the threads co-
operate on each cuboid computation. If the underlying par-
allel skyline algorithm is resource-friendly, then SDSC will
also be resource friendly, since it only executes one cuboid
computation at a time on each device. Meanwhile, there is
minimal complexity introduced by cross-device task paral-
lelism, because each device processes an independent atomic
task (i.e., cuboid). It is relatively easy to incorporate new
parallel skyline algorithms, algorithms that target particu-
lar settings (e.g., low cardinality domains [12, 13]), or spe-
cialisations on other architectures for which parallel skyline
algorithms exist (e.g., FPGAs [38]).

On the other hand, SDSC scales poorly with d, since each
new dimension doubles the number of times the parallel sky-
line algorithm is run. Although the algorithm exposes data
parallelism (in computing a cuboid), that data parallelism
is very limited for cuboids near the bottom of the lattice
(where resources are starved by a dearth of work to paral-
lelise). The algorithm incurs 2d − 2 synchronisation points.

4.3 Point-bitmask-based template
By shifting away from lattice traversals, we expose much

more data parallelism in skycube computation. In particu-
lar, computing Bp6∈S for each p ∈ S+

δ (P), δ = 2d − 1 (i.e.,
δ is the original, unprojected data space) exposes |S+

δ (P)|
data-parallel tasks. However, some ingenuity is required
in order to calculate Bp∈S efficiently. Our third template,
multiple-device-multiple-cuboid, makes this shift and adapts
the globally-shared quad tree techniques used in state-of-
the-art multicore [8] and GPU [2] skyline algorithms, thereby
obtaining cross-device data parallelism.

4.3.1 Multiple-device-multiple-cuboid (MDMC)

Algorithm 3 Multiple-device-multiple-cuboid (MDMC)

Input: A set of points P
Output: Skycube of P as a HashCube,H
1: H ← empty HashCube (array of maps of vectors)
2: Build quad tree T over S+(P) in parallel
3: for all points p ∈ S+(P) in parallel do
4: B6∈S ← cuboid non-membership, all 2d − 1 bits unset
5: B6∈S+ ← strict non-membership, all 2d − 1 bits unset
6: for selected nodes n of T do
7: Set each bit δ of B 6∈S ,B 6∈S+ if n implies q ≺≺δ p
8: for all unset bits δ of B 6∈S , relevant leaves n of T do
9: q ← point corresponding to n
10: Compute Bq<p, Bq=p

11: if q ≺δ p and Bq<p|Bq=p is not set in B 6∈S+ then
12: Set bits of all submasks of Bq<p in B 6∈S+ and

of Bq<p|Bq=p in B 6∈S
13: Insert B6∈S into H

Parallel strategy Algorithm 3 outlines MDMC in pseu-
docode and Figure 3 illustrates the idea (although it will
be presented more extensively for the specialisations). Each
data-parallel task ti processes a unique point p ∈ S+(P), de-
termining in which subspaces it is dominated (i.e., Bp6∈S(P))
and strictly dominated (i.e., Bp 6∈S+(P)). The overall strategy
is a filter and refine algorithm over the subspaces: a cheap
routine is run first (the filter phase, Lines 6–7) to rapidly
rule p out of many subspace skylines; a more expensive rou-
tine is run next (the refine phase, Lines 8–12) to verify which
of the remaining subspace skylines really contain p. The two
phases are the two hooks for the MDMC template.

Both phases are accelerated by a read-only, cross-device-
shared quad tree that minimises memory reads. The tree
(shown at the top of Figure 3) is computed as the first step
(Line 2), while calculating the extended skyline, S+(P). The
filter phase uses only the tree structure to prune subspaces,
whereas the refine phase uses the tree and DTs with the
actual data points. How and how effectively the phases work
is left to the specialisations, but the filter phase’s avoidance
of actual data points should drastically reduce the load on
the memory subsystem while its pruning should reduce the
more expensive processing in the refine phase.

This template computes Bp 6∈S+(P) to improve the asymp-

totic complexity from O(n(2dn)) to O(n(2d + n)). Line 10
produces a d-dimensional bitmask Bp≤q. There are only
2d unique values for this bitmask, and, generally, 2d �
|S+(P)|. So, if Line 10 produces a duplicate bitmask, then
q conveys no new information about subspaces in which p is
dominated—we skip the redundant work on Line 11.

We can be even more aggressive. We can set in B 6∈S+(P)

every sub-mask of Bp<q, because strict dominance propa-
gates to all subspaces. Even considering non-strict domi-
nance, if the Bp≤q’th bit is set in B 6∈S+(P), we know dom-
inance has already been asserted for all submasks of Bp≤q.
We just move on to the next point q′ without processing
Bp≤q further. Lines 7 and 12 maintain B 6∈S+(P) by setting
bits whenever p is determined to not be in a subspace ex-
tended skyline. Line 11 verifies that Bp≤q is unprocessed
before executing the expensive O(2d) Line 12.

The quad tree must be defined with global pivots, as in [2].
The dynamic, recursive quad trees [8, 21, 23, 42, 43] require
DTs at inner nodes when they are traversed by a point p,

t0

Bf0 6∈Si(P)

0001011

B
f0 6∈S+

i (P)

0001011

t1

Bf1 6∈Si(P)

0000111

B
f1 6∈S+

i (P)

0000111

t2

Bf2 6∈Si(P)

0100110

B
f2 6∈S+

i (P)

0100110

t3

Bf3 6∈Si(P)

0010101

B
f3 6∈S+

i (P)

0010101

t4

Bf4 6∈Si(P)

1111111

B
f4 6∈S+

i (P)

0110111

pm = (169, 12, 12.20)

pq010 pq011 pq110 pq101

f1 f0 f2 f3 f4

101110011010

111001000010111

Figure 3: MDMC data structures constructed from Table 1:
a globally shared read-only quad-tree (top) and thread-local
solution masks recording skyline and extended skyline mem-
bership per subspace (bottom). This quad tree uses the me-
dians and quartiles of the data set to partition space as in [2].
Note that Bf4 6∈S0(P) 6= Bf4 6∈S+

o (P)
because f4[0] = f3[0].

which incurs latencies in the tree traversal, even in our re-
fine phase. If the pivots are defined globally, the tree can
be traversed just by knowing the path to the leaf containing
p [2]. To adapt the tree for skycubes, we add a third level
(octiles). A deeper tree creates a traversal overhead that is
nearly as expensive as conducting DTs. However a shallower
tree, such as the two-level tree in SkyAlign [2], is ineffective
in low-dimensional subspaces, because most bits/dimensions
are not used. Adding a third layer (relative to [2]) doubles
the information carried in the tree per dimension. Physi-
cally, we maintain all quartile and octile masks in flat arrays
of length S+(P), sorted in the order of the leaves (i.e., a re-
verse lookup from point to tree node), to coalesce reads (not
as shown in the semantic Figure 3). Only the top, median
level of the tree, which is insufficient to fully partition the
dataset, is structured as an array of pointers to child nodes.

Hooks To specialise MDMC, the filter and refine phases
must be defined for the given architecture. The filter phase
should prune without using DTs and the refine phase should
produce the exact subspaces in which point p is dominated.
Both phases should minimise memory reads with the quad
tree. Our specialisations described later should better illu-
minate for the reader the purpose of these hooks.

Discussion MDMC exposes significantly more parallelism,
which can be distributed across devices, by defining a paral-
lel task per data point rather than per cuboid. Since every
task is independent, there is no need for synchronisation.
Moreover, as MDMC can asynchronously insert new solu-
tion bitmasks into a Hashcube, the memory overhead can
be an order of magnitude smaller than the other templates.

On the other hand, MDMC consumes a lot of local state
for each work task on account of its two bitmasks of length
2d − 1. Specialising the template for a new architecture
requires significant innovation, since the filter and refine
phases must be newly defined and the challenge of traversing
a spatial partitioning tree in parallel may need to be solved.

5. SPECIALISATIONS FOR MULTICORE
This section describes how we capture the considerations

in Section 2.3 to specialise the templates for multicore CPUs.

5.1 CPU lattice-based specialisations
STSC is the most flexible template to specialise for CPUs

because any skyline algorithm can be hooked into Line 4
of Algorithm 1. However, STSC does not compute sub-
space skylines in isolation; to the best of our knowledge, no
research has investigated how shared-memory skyline algo-
rithms scale as the number of concurrent queries increases.

The state-of-the-art sequential algorithm, BSkyTree [21,
23], and the similarly designed point-based partitioning meth-
ods OSP [43] and VMPSP [42], use a variable-depth—and
therefore pointer-based—recursive quad tree to replace DTs
with MTs. Consequently, the tree is not very compact (i.e.,
consumes more cache) and chases a lot of pointers, putting
threads in greater contention for the limited cache resources.
In contrast, the Hybrid [8] multicore algorithm, which we
hook in instead, builds a compact, fixed two-level, array-
based tree and uses modest intra-cycle parallelism [25] by
representing the full path to each leaf in a single 32-bit word.

For SDSC, the choice of multicore skyline algorithm is
more straight-forward, because the algorithm will be run
in isolation on the CPU. APSkyline [26], Hybrid [8], and
Scalagon [13] have never been formally compared to each
other; however, APSkyline has not been shown to scale
beyond four dimensions and Scalagon is designed for low-
cardinality domains. Thus, we hook in for SDSC as well the
more general Hybrid algorithm, providing the added advan-
tage of a very fair comparison of lattice-based templates.

Note that some minor adaptation is necessary to hook Hy-
brid into STSC and SDSC to also produce S+

δ (P) and to con-
duct subspace DTs. Producing S+

δ (P) follows immediately
from Definition 2 by replacing DTs with strict dominance
tests and only using the relevant dimensions for the quad-
tree partitioning. However, contrary to intuition, conduct-
ing MTs and DTs in subspaces is not cheaper than in the full
space, because mask tests use constant-width 32-bit words
(c.f., Section 2.2) and DTs should be SIMDized [9]. There
is no advantage in projecting a d-bit mask when d ≤ 32, be-
cause the bitwise operations are the same. Instead, we add
the projection to the mask test (& δ in Equation 1), which
increases instruction-level parallelism. On-the-fly projection
of the DT requires rearranging specific dimensions from sep-
arate cache lines to align them for SIMD registers. We in-
stead conduct the DT on the already-aligned d dimensions
and then project the resultant bitmask afterwards.

5.2 CPU point-based specialisation
Our CPU specialisation of MDMC exploits the large L2

cache and tries to simplify the work of the branch predictor.

Filter hook The filter on Lines 6–7 of Algorithm 3 should
very quickly determine a large percentage of subspaces δ in
which point p is dominated (i.e., set many bits of B 6∈Sδ(P)).
For this, we exploit the information already in the path la-
bels of the tree, with which we can assert transitive relation-
ships without ever loading data points from memory. The
top two levels of the tree can be entirely L2-resident, as they
contain ≤ 4d partitions; for d ≤ 8, that requires ≤ 256 KB,
which fits in L2 cache on Intel Ivy Bridge and Haswell archi-
tectures. For d > 8 or smaller caches, the top-two levels still
typically fit in L2 cache, because most partitions are empty.

We iterate the top two layers in a predictable depth-first
order, examining path labels. Consider f4 in Figure 3 as an
example, with a median mask Bf4<pm = 5 and a quartile
mask Bf4<pq101 = 7. For each other median mask in the
tree, such as Bf0<pm = 3, we construct a mask of dimensions
in which that bitmask transitively implies strict dominance:
∼Bf1<pm & Bf4<pm = 4. In the resultant subspace, δ = 4,
and all its subspaces, f4 is clearly, strictly dominated.

The same logic applies to the quartile masks at the next
level of the tree, except that we exclude bits where the me-
dian masks were unequal (i.e., the points are compared to
different quartiles), producing δ′ = 1 in the example. We can
conclude that f4 is dominated in all subspaces of δ | δ′, hav-
ing loaded nothing but the tree’s path labels and branched
on no conditions except the depth-first tree traversal. The
same logic can be applied to the third level of the tree, but
competing threads would start evicting cache lines.

Refine hook The refine phase (Lines 8–12 of Algorithm 3)
must explicitly verify whether p is dominated in any of the
subspaces that could not be filtered in the previous phase.
We iterate the remaining subspaces in a top-down, breadth-
first manner to exploit the converse of the insight in BUS [41]:
if p is dominated by q in subspace δ, then it is dominated
by (or equal to) q in all subspaces of δ.

For each subspace δ, we iterate the quad tree, using Equa-
tion 1 to prune subtrees. Whenever we reach a leaf with
point q, we conduct a vectorised DT to produce the masks
Bp<q and Bp=q. If Bp<q | Bp=q is a mask that has not yet
been seen for point p, then we iterate through each unver-
ified subspace δ and set p as dominated in any δ for which
(Bp<q | Bp=q) & δ = δ and Bp=q & δ 6= δ.

6. SPECIALISATIONS FOR THE GPU
This section describes how we capture the considerations

in Section 2.3 to specialise the templates for the GPU.

6.1 GPU lattice-based specialisations
Selecting algorithms to hook into the lattice-based tem-

plates is straight-forward on the GPU. STSC cannot be spe-
cialised (a clear weakness of the template), because there are
no single-threaded GPU algorithms. For SDSC, there are
only three GPU skyline algorithms from which to choose:
GNL [10], GGS [1], and SkyAlign [2]. The latter has been
shown to be orders of magnitude faster on most workloads [2].

As with the CPU in Section 5.1, one must adapt the sky-
line algorithm to calculate S+

δ (P) and to conduct subspace
MTs and DTs. S+

δ (P) again follows from Definition 2 by
replacing DTs with strict dominance and partitioning data
based on only the relevant dimensions. Also, mask tests are
handled on the GPU exactly like on the CPU, by adding the
projection to Equation 1. But, DTs are handled differently.

The GPU does not have SIMD registers for data-parallel
DTs. Instead, the DTs in SkyAlign are unrolled to max-
imise instruction-level parallelism. Therefore, we project
data points on-the-fly into subspaces to make DTs cheaper.

The projections provide a very minor acceleration with the
row-major data layout, because the latency of the memory
loads is the dominant cost of a DT and the projections do
not substantially reduce the number of (anyway contiguous)
cache lines read. Note that a column-major data layout
would be worse, since we seldom access consecutive data
points: a point is only accessed when used for a DT, which

1 5 10

105.5

106

T
im

e
(s
)

4 8 12
101

104

107

PQ QSkyCube

Figure 4: QSkycube and our parallelisation, on independent
data, single-threaded: relative to n×105 (left) and d (right).

in turn only happens if the leaf of the quad tree at which the
point is located cannot be pruned during the tree traversal.

6.2 GPU point-based specialisation
Limited thread state drives our GPU specialisation of the

MDMC template. The task-local variables, B 6∈S(P), B 6∈S+(P),

at a length of 2d − 1, consume a lot of state. At d = 16,
each consumes 8 KB, but shared memory is only 96 KB per
2048 concurrent threads on our GPU card. Even at low di-
mensionality, there is not sufficient shared memory for each
thread to keep a local copy of the task-local variables. Yet,
because of the frequent reads and writes, the latencies are
too high to keep them in global memory. Therefore, in our
specialisation, all threads within a thread block cooperate
on processing a single data point p and we adapt the thread
block size to the amount of shared memory required, i.e., 2d

bits. (As d increases, more state is required and thus the
number of threads processing each p is increased.) Conse-
quently, we must expose substantial data-level parallelism
within the already data-parallel task of processing p.

Filter hook Iterating a quad tree to skip work on behalf of
a single point, even when defined with static, global octiles,
is non-trivial with step-locked threads. However, we still
wish to exploit the information already in the path labels of
the quad tree to avoid any expensive loads of data points.

We leverage the fact that the tree has a constant height
by traversing the leaves, not the tree, in strides equal to the
number of threads t processing point p; i.e., thread ti will
process leaves 〈i, t+ i, 2t+ i, . . .〉. At a given leaf l, we con-
struct a composite bitmask comparing the entire path to the
leaf containing p and the entire path to l. If the composite
bitmask is unseen, we update Bp6∈S(P) and Bp6∈S+(P).

This routine is effectively a massively data-parallel se-
quential scan of S+(P) that uses the tree structure as a
predicate to filter out subspaces. The only branch diver-
gence comes after constructing the composite length-d bit-
mask, and this can occur at most 2d � |S+(P)| times. By
reading the entire tree, the GPU filter is much stronger than
the CPU filter; by scanning the tree sequentially from left
to right, the memory loads are all coalesced. However, the
GPU filter does far more processing than the CPU filter.

Refine hook For the refine step of MTMC on the GPU,
we employ the same strategy as on the filter step. We tra-
verse all leaves in a strided, data-parallel fashion (i.e., do
a second scan) and rederive combined masks as before, but
this time generating both Bq<p and Bq≤p. If Bq≤p 6= 0 and
the Bq<p | Bq≤p’th bit is not set in B

p 6∈S+
i (P)

, then the thread

1 5 10 20HT
1
5

10

20

S
p
ee
d
u
p
(×

)

10 20 40HT
1
5

10

20

PQ ST SD MD

Figure 5: Speedup relative to single-threaded execution as #
threads vary on one (left) or two (right) socket(s) (default).

elects to do a DT between q and p and update Bp 6∈S(P) and
Bp 6∈S+(P) accordingly. The warp performs a warp vote to
see if any thread needs a DT, and all threads conduct DTs
if the vote returns true. Because the majority of subspaces
have already been pruned by the filter step (by the Pigeon
Hole Principle), the warp vote is usually false. When the
threads reach the end of the tree, Bp 6∈Si(P) is asynchronously
copied to the CPU and inserted into a HashCube.

7. EXPERIMENTAL EVALUATION
Here we evaluate the template specialisations relative to a

baseline parallelisation of the sequential state-of-the-art [24].
Additional experiments appear in Appendix A.

7.1 Environment and setup
Hardware CPU specialisations are studied on a dual-
socket, ten-core Intel Xeon E5-2687W v3 3.10 GHz CPU
with hyper-threading enabled and 128GB of DDR4 mem-
ory, running OpenSuse Leap (kernel version 4.1.12). To im-
prove the performance of the transaction lookaside buffer
(TLB), we have transparent huge pages enabled. GPU spe-
cialisations are evaluated on an NVidia GTX 980 card. For
cross-device experiments, we add an additional 980 and a
GTX Titan to a separate socket of the CPU via PCIe3.

Implementations4 Template code is written in C++, us-
ing boost threads to distribute tasks to devices. The CPU
specialisations in C++ use the OpenMP API (4.0) and boost
threads for multi-threading and are compiled with g++ (5.2.1)
with the -O3 optimisation flag. The GPU specialisations
are written in CUDA to comply with compute capability
3.5, and all code is compiled using nvcc (8.0.44). We pin
threads to cores with numactl, read hardware counters with
PAPI, and time the algorithms—from after the datasets are
loaded into CPU memory until CPU memory holds the en-
tire skycube, including all PCIe transfers—in the software.

Datasets Following literature, we use the benchmark data
generator [5] to produce synthetic workloads of anticorre-
lated (A), independent (I), and correlated (C) dimensions.
We vary the number of points n ∈ {1, 2.5, 5, 7.5, 10} × 105

and the number of dimensions d ∈ {4, 6, . . . , 16}, with de-
faults of (I), n = 500 000 and d = 12, as in [22,24], producing
datasets that consume up to 100 MB in raw text. As the
synthetic datasets importantly capture various levels of cor-
relation between the attributes, but not data skew, we also
conduct experiments with real data (Appendix A.1).

4http://github.com/sean-chester/skycube-templates

Establishing a baseline The existing parallel skycube
algorithm [36] is coupled to the Anthill framework, which
is not designed for a single node. So, as a baseline, we im-
plement a parallel version of QSkycube [22,24] with parallel
pragmas on the loop iterating cuboids (similar to STSC).
We share resultant quad trees freely among child subspaces,
but elect not to “merge results from multiple parents” to re-
duce the resultant traffic across sockets. Figure 4 compares
the single-threaded performance and workload scalability of
this baseline, called PQSkycube, to QSkycube code that we
obtained from the authors [24]. The point to be made here
is simply that PQSkycube does not introduce overhead to
QSkycube. To the contrary, it obtains a minor speed-up by
freeing memory that is no longer used (e.g., quad trees two
levels above the currently processed lattice layer).

7.2 Results and discussion

Parallel scalability We first study how the CPU spe-
cialisations scale with threads. Figure 5 shows the speedup
on the default workload for threads pinned to cores on 1
(left) or 2 (right) sockets. The right-most data point in each
plot uses hyper-threading (HT). The common point, t = 10,
allows us to analyse the effect of using more than one socket.

Both STSC (ST) and MDMC (MD) scale very well with
physical cores and MD continues to scale well with HT.
Neither algorithm suffers significantly from NUMA effects.
SDSC (SD) is not drastically affected by NUMA, but is
less scalable in general and degrades with HT, trends that
are consistent with the underlying skyline algorithm [8].
PQSkycube (PQ) improves slowly with additional cores and
HT, but obtains nearly no speed-up compared to single-
threaded computation as soon as a second socket is intro-
duced. This is consistent with our intuition that the extra
sharing across sockets introduces prohibitive NUMA laten-
cies and that threads compete for cache to store their larger
pointer-based trees. Later, we investigate this directly.

Workload scalability (CPU) We next analyse how the
CPU algorithms scale with datasets. We use 40 threads for
MD and ST, 20 HT for PQ, and 20 threads on two sockets
for SD so that each algorithm is running under its optimal
thread configuration. (The results in Figure 5 hold generally
across these workloads). Figure 6 shows the execution times
(in ms), starting from just after the dataset is loaded into
memory and ending once the lattice or HashCube has been
fully constructed. The leftmost plots vary n; the rightmost
plots vary d; correlation increases from top to bottom.

Across most workloads, MD is the fastest, followed by
ST, SD, and then PQ, by significant margins (considering
the logarithmic y-axis). PQ is up to two orders of magnitude
slower than MD on account of its poor parallel scalability.
ST, with better parallel scalability, achieves a several factor
improvement over SD (the other lattice-based template).

The algorithms trend consistently with respect to n (left).
On (A) and (I) distributions, the templates converge with
increasing n, since this creates more parallel tasks for MD to
complete, while adding an overhead to the lattice-traversal-
based methods that may disappear by the lower levels of the
lattice as the extra points are pruned anyway. On (C) data,
SD is slower than PQ, although only requires ≈ 2 s for one
million 12d points. The parallel tasks are small, because the
extended skylines are small; so, SD never achieves high utili-

http://github.com/sean-chester/skycube-templates

1 5 10

104

105

106

T
im

e
(m

s)

4 8 12 16

102

104

106

1 5 10

103

104

105

T
im

e
(m

s)

4 8 12 16

102

105

108

1 5 10
101

102

103

104

Cardinality, ×105

T
im

e
(m

s)

4 8 12 16
100

103

106

Dimensionality

Anticorrelated

Independent

Correlated

PQ ST SD MD

Figure 6: CPU execution times: relative to n × 105 (three
plots on left), d (three plots on right) and distribution ((A)-
top; (I)-middle; (C)-bottom).

1 5 10

104

105

106

T
im

e
(m

s)

4 8 12 16

102

104

106

1 5 10

103

104

105

T
im

e
(m

s)

4 8 12 16

102

105

108

1 5 10
101

102

103

104

Cardinality, ×105

T
im

e
(m

s)

4 8 12 16
100

103

106

Dimensionality

Anticorrelated

Independent

Correlated

SD-GPU MD-GPU SD-All MD-All

Figure 7: GPU and cross-device (-All) execution times:
relative to n × 105 (three plots on left), d (three plots on
right) and distribution ((A)-top; (I)-middle; (C)-bottom).

sation, whereas PQ (and similarly ST) fully occupy each core
concurrently computing the small, independent cuboids.

The trends are interesting with respect to d (right). For
(A) and (I), PQ is the slowest. It does not complete d = 16
on (A), given the memory overhead of simultaneously main-
taining

(
16
8

)
non-compact trees. MD is typically the fastest,

except from d = 6 to 10. As d increases towards 8, the ex-
tended skyline (i.e., input after Line 2 of the algorithm)
grows very quickly, especially for (A), generating signifi-
cantly more parallel tasks to complete. However, the growth
in the extended skyline saturates after d = 8 and then the
partitioning scheme with fixed height trees becomes particu-
larly effective, since there are up to 4d partitions in the first
two levels of the tree (as opposed to the dynamic tree of PQ
that degrades to a single layer at higher dimensions). ST
and SD have consistent performance relative to each other.

Throughput analysis (CPU) The experiments so far
have shown the CPU algorithms have dramatically different
parallel scalability and consequently execution times. How-
ever, they have not explained the variance in parallel scala-
bility. Here we look at throughput metrics, measured with
hardware counters, to better understand the earlier results.

First we measure compute throughput as cycles per instruc-
tion (CPI) in Figure 11 on the default workload, averaged
across all threads. High CPI indicates that compute re-
sources idle and is typical of memory-bound computation.
The theoretically ideal value on our Intel Haswell machine is

0.25: on average, four instructions are retired per cycle. We
show throughput on 10 cores using one socket (red) and split
evenly over two sockets (blue). The latter doubles the L3
cache but induces long intersocket latencies (i.e., NUMA ef-
fects). To better observe the variance between the templates
and the number of sockets, we render PQ with a separately
scaled y-axis; otherwise, the large differences between SD
and MD would be dwarfed by the scale used for PQ.

We see that the CPI of PQ is nearly doubled by the second
socket, in line with the second-socket degradation of PQ in
Figure 5. The CPI of the three templates is mostly stable
across sockets but not algorithms. The data-parallel (and
most efficient) MD template has the best compute through-
put by a factor of 50% over the task-parallel SD. STSC also
has much better throughput than SDSC, matching Figure 5.

The high CPI and the degradation on two sockets of PQ
suggest memory-boundedness. Interestingly, this is not true
of PQ at lower thread counts, t; The CPI value increases
with t: 〈0.92, 0.98, 1.12, 1.29, 1.41, 1.67, 1.83, 1.98, 2.20, 2.46〉
for t = 〈1, . . . , 10〉 on a single socket. In other words, PQ
is compute-bound when run sequentially, but becomes in-
creasingly memory-bound as more cores have less L3. (In
contrast, CPI is independent of t for MD.)

We argue that the compute throughput results from cache-
consciousness. Figure 8 shows the total number of cache
misses for the thread-local L2 cache (left) and the socket-
local L3 cache (right). The algorithms differ by orders of

PQ ST SD
0

1

2
·1010

#
o
f
m
is
se
s

MD
0

1

2

·107
1 socket 2 sockets

(a) L2 Misses

PQ
0

1

2

3

4
·109

#
o
f
m
is
se
s

ST SD
0

1

2

3

4
·108

MD
0

1
2

1
·106

1 socket 2 sockets

(b) L3 Misses

Figure 8: Cache misses (default workload; 10 cores)

PQ
0

2

4

·1012

#
o
f
cy
cl
es

ST SD
0

1

2

·1011

MD
0

2

4

6

·108
1 socket 2 sockets

(a) L2 Stalls

PQ
0

2

4

·1012

#
o
f
cy
cl
es

ST SD
0

1

2

3
·1011

MD
0

2

4

6

·108
1 socket 2 sockets

(b) L3 Stalls

Figure 9: Stalled cycles, load pending (default; 10 cores)

PQ
0

0.5

1

1.5

2
·10−2

%
o
f
lo
a
d
µ
o
p
s

ST SD
0

0.5

1

1.5

MD
0

0.5

1

1.5

2

·10−3

1 socket 2 sockets

(a) Loads that miss STLB

PQ
0

0.1

0.2

%
o
f
cy
cl
es

ST SD
0

5

10

15

MD
0

1

2

·10−2

1 socket 2 sockets

(b) Page walk duration

Figure 10: Data TLB performance (default; 10 cores)

PQ

2

4

C
y
cl
es
/
in
st
ru
ct
io
n

ST SDMD

0.3

0.5

0.7

1 socket 2 sockets

Figure 11: Cycles per instruc-
tion (default; 10 cores)

0% 10% 20% 30%

S
D

M
D

% of parallel tasks

CPU Titan
980-1 980-2

Figure 12: Portion of work
done by each device (default)

magnitude, so we again split the algorithms into subplots
with different axes to ensure socket comparisons are visible.
A multiplier above the axes, e.g., ·1010, indicates the scale.
Notably, the cache-conscious MD suffers 100-fold fewer L2
cache misses, which fuels the higher compute throughput.
PQ, ST, and SD are not appreciably different in terms of L2
cache misses, but PQ has the fewest of the lattice-traversal-
based methods, despite its pointer-based tree.

The differences become more pronounced for L3, both be-
tween algorithms and between socket counts. PQ suffers
most with L3 when sharing it among all cores as well as
when its memory is split across two sockets yielding a seven-
fold increase in L3 misses. The cache conscious MD again
performs the best owing to the small, static quad tree. It
retains its order of magnitude cache performance advantage
relative to the other algorithms, although the extra socket
leads to a 43% increase in L3 misses. SD suffers a 3-fold
increase in L3 misses on two sockets, as the tree used by the
underlying algorithm must now be kept coherent between
the two sockets. For MD, PQ, and SD, the prefetcher is
unable to overcome the intersocket latency to populate L3
and so there are more misses with two sockets. However, ST
benefits from having double L3 cache in which to work.

Cache misses do not tell the entire story, however, because
the CPU can hide latencies, with, e.g., out-of-order execu-
tion. Figure 9 shows the number of cycles during which a
core was stalled while it had a pending load request at a
given level of the cache hierarchy. These are cycles during
which the core idled because it had not loaded its operands;
i.e., the latencies could not be hidden. Again, the algorithms
are split into subplots with different scales due to different
orders of magnitude. Here, at both L2 and L3, we observe
trends that are very similar to the CPI numbers shown in

Figure 11, suggesting that the differences in computational
throughput come down to memory subsystem stalls. We
observe that PQ is dramatically affected by NUMA, MD is
minorly affected, and that SD and ST are NUMA-tolerant
(with the latter benefitting from the extra cache). With MD
and ST incurring the fewest L3 cache misses, the latencies
can be hidden rather than converted into stalls.

Figure 10 further investigates the memory subsystem per-
formance by analysing the translation lookaside buffer (TLB)
for data loads (vs. data stores or instruction loads). The
TLB entries map virtual memory addresses to physical mem-
ory addresses. Specifically, Figure 10a gives the percentage
of load operations (µops) that miss the second-level, shared5

TLB (STLB), causing a page walk to fetch the TLB entry
from memory. Figure 10b gives the percentage of cycles con-
sumed by those page walks (i.e., the cost of the TLB misses).

First, we observe that ST and SD incur a much higher per-
centage of TLB misses than the data-parallel MD template
(for which only 0.002 % of TLB lookups miss the second-
level cache). They also incur a higher percentage of misses
than PQ, but mostly on account of issuing ≈ 4× fewer load
µops—the absolute numbers are comparable. This suggests
that the cache-consciousness of MD promotes good spatial
locality, whereas the DT-based tree traversals in the lattice-
based methods make relatively frequent wide-range jumps in
memory addresses, even with the compact, array-based tree
representation used by Hybrid. The random access to data
points for DTs at inner nodes of the recursive tree traversal
often require memory addresses that are not TLB-resident.

The TLB misses have a notable effect on the cache perfor-
mance, since missed entries must be retrieved from the mem-

5Shared between data and instruction TLBs, not cores.

ory subsystem. For direct comparison with Figure 9, the
absolute number of cycles spent on page walks (one socket)
are: 3.6 · 109, 1.3 · 1011, 1.5 · 1011, and 1.0 · 106 for PQ, ST,
SD, and MD, respectively. Observe that for ST and SD, in
particular, these numbers are proportionate to the number
of cycles stalled on pending loads. Thus, not only is it that
ST and SD spend a significant number of cycles retrieving
TLB entries, but also that those TLB misses explain many
of the additional stalls, relative to MD, in Figure 9b.

Overall, the cache and TLB metrics demonstrate the dif-
ference between the static tree of MD, which is traversed
without loading data points, and the recursive tree whose
traversal requires DTs. Comparing ST and PQ, in particu-
lar, which use the compressed Hybrid array-based tree ver-
sus the pointer-based, variable-depth SkyTree, respectively,
we see the former maintains high throughput and reasonable
cache performance, whereas the latter degrades quickly from
unpredictably chasing pointers across sockets. (Thus Hybrid
is preferred to BSkyTree in the STSC specialisation.) Still,
ST and SD suffer from poor TLB performance compared to
the static tree used in MD, incurring many latencies.

Workload scalability (GPU) Figure 7 repeats the work-
load scalability experiments from Figure 6 for the GPU
specialisations (solid lines). To facilitate comparisons with
the CPU specialisations, the y-axis scales match Figure 6.
Encouragingly, the trends between templates mostly repli-
cate on the GPU. MD outperforms SD: especially for the
lower-dimensional cuboids with dramatically reduced input
sizes, SD struggles to generate enough parallel tasks to fully
utilise the GPU card. MD, on the other hand, always gen-
erates S+(P) parallel tasks. The performance converges as
n increases (except on (C)), favouring the cuboid-by-cuboid
approach of SD. However, as d increases, the performance
of the templates originally diverges, only to converge for
d ≥ 12. At this point, the state consumed by the local
variables becomes a factor and the MD specialisation can
support fewer concurrent data points. By d = 16, SD has
matched MD again for (A) and (I). Given the trend that
new generations of GPUs add more state per thread, this
convergence may delay til higher d in the future.

Comparing to the CPU specialisations, we see that MD is
generally faster on the CPU for (C) or n ≤ 250 000, when the
number of parallel tasks is lower, but faster on the GPU for
(A), where a large extended skyline generates substantial
parallel work. Other workloads strike a balance; so, the
CPU and GPU are competitive. With respect to d, MD
is generally faster on the CPU at low values when there
are fewer subspaces to iterate and faster on the GPU at
moderate to high d. SD is generally faster on the CPU,
owing to its larger cache sizes which facilitate cache-sharing
between cuboids and the relative ineffectiveness of the GPU
on the small inputs that occur near the bottom of the lattice.
Scalability is better on the GPU with respect to n as more
parallelism is exposed and comparable with respect to d.

Heterogeneous processing Our template algorithms can
scale across heterogeneous co-processors. Consider Figure 7
again, which additionally shows the heterogeneous perfor-
mance of MD and SD (dashed lines) when run on all 20
physical CPU cores and all three GPUs. Considering the
figures on the left, i.e., scalability with respect to n, SD
consistently gets nearly a 3× speedup by using all GPUs
(of non-uniform model) and the CPU, relative to the single

GPU (solid blue line), indicating near-linear scalability with
co-processors. A similar pattern exists for MD on (I) and
(A), while the small extended skyline cannot be distributed
efficiently on (C). The MD specialisation is faster than that
of SD but by a decreasing margin as n grows and exposes
more tasks for the MD algorithm.

Considering the figures on the right, i.e., scalability with
respect to d, we observe a similar pattern as SD outperforms
its GPU counterpart by a factor that grows with d. Again we
observe that enough parallel tasks must be available for MD
to fully utilize the cross-device processing which happens
at d = 8 for (I) and (A) but never for (C). The improved
relative performance at higher values of d is attributable to
increases in the number of parallel tasks: the larger extended
skyline exposes more data parallelism for MD, and the expo-
nential growth in the number of cuboids exposes more task
parallelism for SD.

As argued in the introduction, we only benefit from the
additional co-processors if the computation distributes evenly
across them. Figure 12 shows the percentage of cuboids (SD)
or data points (MD) processed by each GPU and by the two
CPU chips. Each processor executes at least 20% of the par-
allel tasks, with a range of ≈ 10 %, indicating a good load
balancing between the devices. For SD the two 980s each
account for almost 29% of the work, but for MD there is a
little more balance: the MD template gets better utilisation
out of the CPU chips, which contribute ≈ 25 % of the result.
We expect lower throughput on the older Titan GPU card,
relative to the newer 980 cards, since it has fewer shared mul-
tiprocessors; on both templates it contributes roughly 20%
of the work, representing a fairly small difference. Thus we
obtain near-linear speedup from additional GPUs, despite
their being of different generations. This promising result
suggests our template methodology handles increasing het-
erogeneity in the compute ecosystem.

8. CONCLUSION
This paper introduced a novel templating methodology to

obtain high utilisation on heterogeneous servers. The tem-
plates outline the high-level, hardware-independent control
flow in a general algorithm, while the parallel steps are de-
fined in architecture-specific specialisations. We apply the
approach with three templates for skycube materialisation.
The experiments reveal that our cache-conscious CPU spe-
cialisations are much more scalable on parallel architectures
than a baseline solution. Most notably, the templates han-
dle heterogeneity well, with each of three GPU cards and
a dual-socket CPU contributing equally to the generation
of results. Ultimately, we can compute a skycube over the
most extreme workload that we study (106 points with 16
anticorrelated dimensions) in less than 9 minutes, an in-
stance that the baseline fails to compute after several hours.
Moreover, the templates accommodate simply “plugging-in”
future concurrent-query or parallel skyline algorithms.

9. ACKNOWLEDGMENTS
This research was supported in part by the WallViz (Dan-

ish Council for Strategic Research) and ExiBiDa (Norwegian
Research Council) projects. We thank J. Lee for code [24]
and the anonymous reviewers for their suggestions to re-
structure the paper and add the experiments in Appendix A.2.

10. REFERENCES
[1] K. S. Bøgh, I. Assent, and M. Magnani. Efficient

GPU-based skyline computation. In DaMoN, pages 5:1–6,
2013.

[2] K. S. Bøgh, S. Chester, and I. Assent. Work-efficient
parallel skyline computation for the GPU. PVLDB,
8(9):962–973, 2015.

[3] K. S. Bøgh, S. Chester, and I. Assent. SkyAlign: a
portable, work-efficient skyline algorithm for multicore and
GPU architectures. VLDB J, 25(6):817–841, 2016.

[4] K. S. Bøgh, S. Chester, D. Šidlauskas, and I. Assent.
Hashcube: A data structure for space- and query-efficient
skycube compression. In CIKM, pages 1767–1770, 2014.

[5] S. Börzsönyi, D. Kossman, and K. Stocker. The skyline
operator. In ICDE, pages 421–430, 2001.

[6] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and
G. Saake. Gpu-accelerated database systems: Survey and
open challenges. Trans. Large-Scale Data- and
Knowledge-Centered Systems, 15:1–35, 2014.

[7] L. Chen and X. Lian. Dynamic skyline queries in metric
spaces. In EDBT, pages 333–343, 2008.

[8] S. Chester, D. Šidlauskas, I. Assent, and K. S. Bøgh.
Scalable parallelization of skyline computation for
multi-core processors. In ICDE, pages 1083–1094, 2015.

[9] S.-R. Cho, J. Lee, S.-W. Hwang, H. Han, and S.-W. Lee.
VSkyline: Vectorization for efficient skyline computation.
SIGMOD Rec., 39(2):19–26, 2010.

[10] W. Choi, L. Liu, and B. Yu. Multi-criteria decision making
with skyline computation. In IRI, pages 316–323, 2012.

[11] J. Chomicki, P. Ciaccia, and N. Meneghetti. Skyline
queries, front and back. SIGMOD Rec., 42(3):6–18, 2013.

[12] M. Endres and W. Kießling. High parallel skyline
computation over low-cardinality domains. In ADBIS,
pages 97–111, 2014.

[13] M. Endres, P. Roocks, and W. Kießling. Scalagon: An
efficient skyline algorithm for all seasons. In DASFAA,
pages 292–308, 2015.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software,
pages 325–330. Addison-Wesley, 1994.

[15] J. He, S. Zhang, and B. He. In-cache query co-processing
on coupled CPU-GPU architectures. PVLDB,
8(4):329–340, 2014.

[16] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and
V. Markl. Hardware-oblivious parallelism for in-memory
column-stores. PVLDB, 6(9):709–720, 2013.

[17] H. Im, J. Park, and S. Park. Parallel skyline computation
on multicore architectures. Inf. Syst., 36(4):808–823, 2011.

[18] W. Jin, A. K. H. Tung, M. Ester, and J. Han. On efficient
processing of subspace skyline queries on high dimensional
data. In SSDBM, pages 1–12, 2007.

[19] G. T. Kailasam, J.-S. Lee, J.-W. Rhee, and J. Kang.
Efficient skycube computation using point and
domain-based filtering. Inf. Sci., 180(7):1090–1103, 2010.

[20] H. Köhler, J. Yang, and X. Zhou. Efficient parallel skyline
processing using hyperplane projections. In SIGMOD,
pages 85–96, 2011.

[21] J. Lee and S.-w. Hwang. BSkyTree: scalable skyline
computation using a balanced pivot selection. In EDBT,
pages 195–206, 2010.

[22] J. Lee and S.-w. Hwang. QSkycube: efficient skycube
computation using point-based space partitioning. PVLDB,
4(3):185–196, 2010.

[23] J. Lee and S.-w. Hwang. Scalable skyline computation
using a balanced pivot selection technique. Inf. Sys.,
39:1–24, 2014.

[24] J. Lee and S.-w. Hwang. Toward efficient multidimensional
subspace skyline computation. VLDB J, 23(1):129–145,
2014.

[25] Y. Li and J. M. Patel. BitWeaving: fast scans for main
memory data processing. In SIGMOD, pages 289–300, 2013.

[26] S. Liknes, A. Vlachou, C. Doulkeridis, and K. Nørv̊ag.
APSkyline: Improved skyline computation for multicore
architectures. In DASFAA, pages 312–326, 2014.

[27] MapD Technologies, Inc. The world’s fastest platform for
data exploration. White paper, 2016.
http://go.mapd.com/rs/116-GLR-105/images/MapD%
20Technical%20Whitepaper%20Summer%202016.pdf.

[28] S. Meraji, B. Schiefer, L. Pham, L. Chu, P. Kokosielis,
A. Storm, W. Young, C. Ge, G. Ng, and K. Kanagaratnam.
Towards a hybrid design for fast query processing in DB2
with BLU acceleration using graphical processing units: A
technology demonstration. In SIGMOD, pages 1951–1960,
2016.

[29] S. Park, T. Kim, J. Park, J. Kim, and H. Im. Parallel
skyline computation on multicore architectures. In ICDE,
pages 760–771, 2009.

[30] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best
views of the skyline: a semantic approach based on decisive
subspaces. In VLDB, pages 253–264, 2005.

[31] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu,
W. Wang, Y. Tao, J. X. Yu, and Q. Zhang. Towards
multidimensional subspace skyline analysis. TODS,
31(4):1335–1381, 2006.

[32] H. Pirk, S. Manegold, and M. L. Kersten. Waste not...
efficient co-processing of relational data. In ICDE, pages
508–519, 2014.

[33] J. Power, Y. Li, M. D. Hill, J. M. Patel, and D. A. Wood.
Toward GPUs being mainstream in analytic processing: An
initial argument using simple scan-aggregate queries. In
DaMoN, pages 11:1–11:8, 2015.

[34] C. Räıssi, J. Pei, and T. Kister. Computing closed
skycubes. PVLDB, 3(1):838–847, 2010.

[35] Y. Tao, X. Xiao, and J. Pei. SUBSKY: Efficient
computation of skylines in subspaces. In ICDE, pages
65–74, 2006.

[36] R. R. Veloso, L. Cerf, C. Räıssi, and W. Meira Jr.
Distributed skycube computation with anthill. In
SBAC-PAD, pages 33–40, 2011.

[37] A. Vlachou, C. Doulkeridis, Y. Kotidis, and
M. Vazirgiannis. SKYPEER: Efficient subspace skyline
computation over distributed data. In ICDE, pages
416–425, 2007.

[38] L. Woods, G. Alonso, and J. Teubner. Parallel computation
of skyline queries. In FCCM, pages 1–8, 2013.

[39] T. Xia and D. Zhang. Refreshing the sky: the compressed
skycube with efficient support for frequent updates. In
SIGMOD, pages 491–502, 2006.

[40] T. Xia, D. Zhang, Z. Fang, C. Chen, and J. Wang. Online
subspace skyline query processing using the compressed
skycube. TODS, 37(2), 2012.

[41] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and
Q. Zhang. Efficient computation of the skyline cube. In
VLDB, pages 241–252, 2005.

[42] K. Zhang, D. Yang, H. Gao, J. Li, H. Wang, and Z. Cai.
VMPSP: Efficient skyline computation using VMP-based
space partitioning. In DASFAA Workshops, pages 179–193,
2016.

[43] S. Zhang, N. Mamoulis, and D. W. Cheung. Scalable
skyline computation using object-based space partitioning.
In SIGMOD, pages 483–494, 2009.

APPENDIX
A. ADDITIONAL EXPERIMENTS

A.1 Experiments with real data
The experiments in Section 7 focused on standard, syn-

thetic benchmark datasets in order to study performance
trends with respect to changes in the workload composi-
tion. Here we augment those experiments by studying per-

http://go.mapd.com/rs/116-GLR-105/images/MapD%20Technical%20Whitepaper%20Summer%202016.pdf
http://go.mapd.com/rs/116-GLR-105/images/MapD%20Technical%20Whitepaper%20Summer%202016.pdf

ID Name Source n d |S+| File size
NBA Basketball http://databasebasketball.com 17 264 8 1 796 1.4 MB
HH Household http://usa.ipums.org/usa/ 127 931 6 5 774 7.5 MB
CT Covertype http://archive.ics.uci.edu/ml/datasets/Covertype 581 012 10 432 253 49.7 MB
WE Weather http://cru.uea.ac.uk/cru/data/hrg/tmc/ 566 268 15 78 036 71.8 MB

Table 2: Sources and specifications of real datasets.

NBA HH CT WE

C
P
U

QSkycube 173 178 904 093 31 968 141
PQSkyCube 70 128 301 989 15 058 017
STSC 20 47 3 050 647 1 402 276
SDSC 73 50 2 122 852 2 272 002
MDMC 13 26 75 320 118 044

G
P
U SDSC 636 217 185 859 559 173

MDMC 16 26 30 731 23 693

A
ll SDSC 191 167 107 251 220 705

MDMC 38 48 16 671 7 630

Table 3: Execution time (ms) on real data. Each CPU algo-
rithm runs with its ideal thread configuration (c.f., Figure 5).

formance on real datasets that have natural data skew. We
first describe the datasets (Section A.1.1) and then analyse
the performance of the algorithms (Section A.1.2).

A.1.1 Dataset descriptions
Table 2 describes the four real datasets that we use. The

first two, Basketball and Household, are commonly used in
skyline and skycube literature (e.g., [22]). The following
two datasets, Covertype and Weather, are more challenging
on account of higher dimensionalities, much larger extended
skylines, and data skew towards optimum values.

Basketball The NBA dataset is a table of player statistics
from the NBA basketball league. Each record corresponds to
one player’s statistics (e.g., points scored, free throws made,
and defensive blocks) for one season. In contrast to tra-
ditional analyses of sports statistics, which rank players on
each attribute independently, the skyline also identifies play-
ers who do not excel in any one statistic but have good com-
posite performance across statistics, i.e., are “well-rounded.”

Although the NBA dataset is quite small and several at-
tributes are correlated, it is perhaps the most frequently
used real dataset for skyline and skycube research. So, we
include it for comparability with previous literature.

Household The HH dataset reports how household in-
come is distributed into different expense categories. Each
record corresponds to one household in the US and indicates
the percentage of household income expended on various cat-
egories (e.g., electricity and rent/mortgage).

The HH dataset is more than 7× larger than NBA but still
contains a very small extended skyline of only 5 774 points.
As with NBA, we include it primarily for comparability with
the results reported in previous literature.

Covertype The CT dataset describes cartographic vari-
ables (e.g., elevation, slope, and distance to the nearest road-
way) for 30 m × 30 m grid cells of the Roosevelt National
Forest in Colorado, USA. We remove the binary and categor-
ical attributes and scale all values to the range [0, 1]. Skyline
points represent forest areas with unique cartography.

This dataset is challenging for skyline and skycube compu-
tation, because many data points share the extreme values.
For example, the 3 hillshade indices are expressed on a scale
of only 255 unique values. Thus, 74 % of the dataset is in the
extended skyline and the skylines remain large in subspaces.

Weather The WE dataset reports monthly precipitation,
latitude, longitude, and elevation for 566 268 terrestrial posi-
tions around the globe. Each record corresponds to a 10’ lat-
itude/longitude cell. A skyline record has a subset of months
with extreme precipitation relative to its three-dimensional
coordinate (preferring elevated, Northeastern positions).

The positional coordinates of the WE dataset are heav-
ily clustered into continents and mountain ranges and the
alternate biomes present different annual patterns of pre-
cipitation. Thus, the WE dataset captures quite well some
non-trivial dependence among attributes.

A.1.2 Results and analysis
Table 3 presents the execution times for each algorithm on

each of the real datasets and on each applicable architecture.
Recall that QSkycube (the top row) is the current state-of-
the-art, PQSkycube is our best parallelisation of it, and the
other three algorithms are our template methods.

First consider the performance of the CPU algorithms on
the small datasets, NBA and HH (first two columns). The
state-of-the-art QSkycube can already solve both instances
in less than 200 milliseconds; nonetheless the parallelisations
still obtain a significant speed-up: MDMC, in particular,
lowers the execution time to 13–26 milliseconds, which is a
6-fold speed-up on HH and an 13-fold speed-up on NBA. For
all five algorithms, the running time is mostly dominated by
that of computing the extended skyline; although, in the
case of SD, the number of synchronisation points (i.e., 2d) is
also critical because there are so few points to process, with
|S+| < 6 000. Thus, ST is faster than SD on both datasets.

These factors are even more noticeable when SD is run
on the GPU, where the small extended skyline activates too
few threads to effectively utilise the card and the synchro-
nisation points are especially expensive. As a result, SD is
significantly slower on the GPU than on the CPU for these
workloads. MD similarly is unable to fully utilise the GPU
card, given the small number of data-parallel tasks; so, it
is slightly slower relative to running on the CPU. For the
cross-device execution, neither SD nor MD can utilize the
available hardware, as the input is too small. This illustrates
the importance of having enough work to distribute across
the co-processors, if using more than one.

Turning to the larger datasets (last two columns), we ob-
serve differing behaviour. For CT, many skylines are very
similar because of the large number of points that have
the same optimum values. Thus, the information sharing
between parent and child cuboids used in QSkycube and
PQSkycube is especially effective, and PQSkycube is an or-
der of magnitude faster than ST and 7× faster than SD.

http://databasebasketball.com
http://usa.ipums.org/usa/
http://archive.ics.uci.edu/ml/datasets/Covertype
http://cru.uea.ac.uk/cru/data/hrg/tmc/

In contrast, this is not observed on the WE dataset, where
instead the parent sharing incurs extra communication and
PQSkycube is an order of magnitude slower than ST. ST
is faster on the higher-dimensional workload (WE), whereas
SD is faster on the higher-cardinality workload (CT), illus-
trating each template’s strength. In contrast, MD is more
robust to these characteristics with a 4× and 11× speed-up
over the closest competitor on CT and WE, respectively.

On these larger workloads, SD and MD both benefit sig-
nificantly from the high-throughput GPU. For the hetero-
geneous processing we also see a gain for both SD and MD,
although it is higher for SD, gaining 19× on CT. Gener-
ally SD gains the most from additional accelerators on CT,
whereas MD gains the most on WE. Across all datasets, MD
performs the best with speedups to the nearest competitor
ranging from 1.5× to 28×. This reflects the advantage of ex-
posing more parallel tasks and computing the skycube point
by point, rather than cuboid by cuboid. Indeed, compared
to the sequential state-of-the-art, our heterogeneous execu-
tion of the MD template improves execution time on CT
and WE 54-fold and 4189-fold, respectively.

A.2 Partial skycube computation
In some scenarios, it may be desirable to generate only

part of the skycube. For example, given the large percentage
of points that make up high-dimensional skylines, it may be
unnecessary to compute high-dimensional subspace skylines
as they may not offer much utility to end users. Alterna-
tively, there may be subspaces that are unlikely to interest
any user, such as strange combinations of months in our WE
dataset. These subspaces could be explicitly excluded from
computation as an orthogonal means to accelerate skycube
materialisation. Here, we study how well each algorithm
benefits if we only need subspaces up to a fixed dimension-
ality, d′ ≤ d. Section A.2.1 describes our modifications to
the algorithms to support partial skycube computation and
Section A.2.2 analyses their performance post-modification.

A.2.1 Experiment setup
Modifications to lattice-based algorithms Recall that
PQ, ST, and SD all compute the skyline with a top-down
lattice traversal, using the results at lattice level |δ| + 1 as
reduced input at level |δ|. If starting at level d′, then com-
puting level d′+1 is unnecessary. Thus, to omit all subspaces
above level d′, we start by computing the full extended sky-
line and use that as input at level d′ (rather than using the
results from level d′ + 1). After computing level d′, we can
reuse results from immediately preceding levels as in the
unmodified algorithms. Memory consumption is apprecia-
bly reduced if d′ > d/2, because we need not store results in
the lattice for subspaces δ where |δ| > d′.

Observe the trade-off: the modified algorithms need to
compute fewer subspace skylines, but they must compute
the uppermost level with a larger input.

Modifications to MDMC Recall that MD consists of
both a filter and a refine phase that are executed for each
point, p. In the former phase, a number of subspace skylines
are quickly identified as not containing p. In the latter phase,
the remaining subspaces are enumerated in a list; for each
subspace in the list, we explicitly verify whether p is in its
skyline. Our modification simply omits adding a subspace δ
to the list if |δ| > d′. In other words, our filter phase may
still prune some points from an “uninteresting” subspace δ if

4 8 12 16

104

106

T
im

e
(m

s)

4 8 12 16

104

106

4 8 12 16

104

106

T
im

e
(m

s)

4 8 12 16

104

106

4 8 12 16

102

104

106

T
im

e
(m

s)

4 8 12 16

102

104

106

Anticorrelated

Independent

Correlated

PQ ST

SD MD

MD-GPU SD-GPU

MD-All SD-All

Figure 13: Execution times for partial skycube computa-
tion relative to the number of lattice layers computed and
distribution ((A)-top; (I)-middle; (C)-bottom).

|δ| > d′, since it is cheaper than verifying |δ| on the fly, but
no correctness guarantee is offered for the skyline of said δ.

A post-processing step could unset “uninteresting” bits in
the HashCube to offer more compression, but MD has low
memory consumption anyway. Future work could reorgan-
ise bits of the HashCube by lattice level to improve its com-
pression on partial skycubes: entire words could then be
omitted if they only contained high-dimensional subspaces.
This would particularly help the GPU specialisation of MD,
because it would decrease the amount of “state” required
to process each point: The limiting factor for concurrency
in the GPU specialisation is the amount of shared memory
devoted to storing the HashCube bitmasks.

A.2.2 Results and analysis
Figure 13 evaluates the execution times of the modified

algorithms on 16d synthetic datasets. We vary on the x-axis
the maximum dimensionality of the “interesting” subspaces.
The left-hand plots include the baseline, PQ, and the CPU
specialisations (c.f., Figure 6) and the right-hand plots in-
clude the GPU specialisations and the cross-device (-All)
runs (c.f., Figure 7). As before, the plots are sorted from
top to bottom by increasing data correlation.

We observe first that on all architectures the lattice-based
algorithms can obtain significant savings by computing only
the lowermost levels, whereas the savings for MD are quite
modest. In fact, on correlated data, MD is often unable

to amortise the overhead of checking the dimensionality of
subspaces that are added to the refine list. Thus, for MD,
one might as well compute the entire skycube, but for the
lattice-based methods, partial skycube computation should
be exploited whenever appropriate for the use case.

For the lattice-based methods, the gains are appreciable
if the maximum dimensionality d′ is not more than half the
input dimensionality. At d = 8, the thickest layer of the
lattice must still be computed; so, < 40 % of processing
is pruned. Computing the middle level of the lattice in-
curs the same peak memory consumption as the unmodified
algorithms; in the case of PQ, which also retains its

(
16
8

)
pointer-based quad trees to reuse at |δ| = 7, this memory
consumption is still prohibitive (for our 128 GB of memory)
on the anticorrelated data.

For the CPU specialisations, MD generally outperforms
SD and ST if computing at least 8 levels of the skycube
and it outperforms PQ if computing at least 6 levels. ST is
always preferable to SD, which in turn is always preferable to
the baseline PQ. For the GPU specialisations, SD is typically
preferable for partial skycube computation, unless the data
is correlated. The cross-device experiments unsurprisingly
show a mix of these trends: SD is preferable if the data is
not correlated and fewer than 8 levels are to be computed.

B. A REVIEW OF SKYLINE CONCEPTS
In this appendix we review the HashCube data structure

(Appendix B.1) and point-based partitioning for skylines
(Appendix B.2), which are both used by MDMC.

B.1 HashCube compression
The HashCube [4] is a data structure for obtaining up to

w-fold compression of skycubes. Whereas the lattice struc-
ture (Figure 1a) replicates each point id for every subspace
skyline in which it appears, the HashCube (Figure 1b) stores
each point id at most once per fixed group of w subspaces.

Specifically, each point p is represented by Bp 6∈S , the set
of subspaces in which p is dominated. This length 2d −
1 bitmask is then split into “words” of length w and each
word is hashed independently to a list of point ids. Thus p
appears in at most one list per w subspaces. For example, in
Figure 1b (where w = 4), Bf1 6∈S is split into w1 = 000 and
w0 = 1011. For hash function h0, flight id f1 will be stored
in the list at key 1011 whereas for hash function h1, it will
be stored in the list at key 000. (If all bits of a word are set,
i.e., a point is dominated in all w subspaces, the point id is
not stored at all for that hash function.)

To retrieve the skyline Sδ(P) of subspace δ, one iterates
the keys of the hash function h(δ−1)/w and concatenates the
point lists for all keys on which the ((δ − 1)%w)’th bit is
set. In this example, S4(P) is recorded by h0 and is the
concatenation of lists for keys 9, 10, and 11.

Representating the skycube with per-point bitmasks fa-
cilitates the finer-grain parallelism of MDMC: each parallel
task can produce one bitmask independently of the others.

B.2 Point-based partitioning
Recent shared-memory skyline algorithms [2, 8, 21, 23, 42,

43], including those in our STSC and SDSC hooks, are effi-
cient because they utilise point-based partitioning. MDMC
also makes use of this technique; so, we review it briefly here.

The key idea, illustrated in Figure 14 for the flights ex-
ample, is to avoid explicit point-to-point comparisons using

f2

Price

D
u
ra
ti
o
n

f0

f1

f3
f4 00

01

10

11
Encodings

Figure 14: The mapping from (the first two attributes of)
the flights in Table 1 onto 2d bitmask encodings for point-
based partitioning, using f2 as a “pivot” point.

transitivity with respect to a common “pivot” point, in this
case f2. The position relative to the pivot of each point p
is represented by a d-length bitmask in which the δ’th bit
is set iff p[δ] ≥ piv[δ]. (E.g., f0—or any point in the red
region—is assigned a bitmask 10 as it has a better price
but worse (or equal) duration than the pivot, f2.) As one
rarely handles d > 32, the bitmasks can be stored as 32-bit
integers and compared to each other with primitive bitwise
operations. Specifically, if the bitmasks Bπ≤p and Bπ≤q in-
dicate the dimensions on which the common “pivot” point π
is better than p and q, respectively, then p ≺δ q only if:

(Bπ≤q | ∼Bπ≤p) & δ = δ. (1)

If Equation 1 does not hold, then there clearly exists a
dimension i of δ on which q[i] < π[i] ≤ p[i]; so, p 6≺δ q.
Compared to an exact dominance test (DT), which evaluates
Definition 1 by loading and comparing up to |δ| values for
each point, this mask test (MT) only requires one value,
reducing memory traffic and improving cache hit ratios.

For example, we immediately see that points in the red
region (e.g., f0) do not dominate points in the orange region
(e.g., f1), because Equation 1 does not hold for Bπ≤p = 01
and Bπ≤q = 00: the second bit reveals through transitivity
with respect to f2 that the red points have worse durations.
On the other hand, Equation 1 holds in the opposite case of
the orange region relative to the red region, but this is in-
sufficient to conclude that all orange points dominate all red
points (c.f., f1 versus f0). Thus, the mask tests are effective
at skipping work only in the presence of incomparability.
In the case of f3 and f4, which both have the same 10 en-
coding, the mask test reveals no information, despite that
f3 ≺ f4. In general, then, point-based partitioning becomes
more effective as dimensionality increases, because: a) there
is more incomparability to detect; and b) each d-length bit-
mask carries more bits of information.

In most point-based partitioning algorithms [8, 21, 23, 42,
43], these bitmasks are generated with a recursive, on-the-
fly, quad tree partitioning of P , and the algorithms prin-
cipally vary on how they select pivot points. For an as-
yet-uninserted point p, one traverses the quad tree, gener-
ating new bitmasks relative to each node and then evalu-
ating Equation 1. One only descends into a subtree after
a failed mask test. MDMC adopts the non-recursive, vir-
tual median- and quartile-based pivot points proposed in
SkyAlign [2] (e.g., in Figure 3), because the partitioning
and quad tree construction can be done statically in ad-
vance. Moreover, one need not load data points to generate
new bitmasks in order to traverse the quad tree, because the
bitmasks are statically defined.

	Introduction
	Background and preliminaries
	Notation: point sets and bitmasks
	Skycubes and subspace skylines
	Architecture considerations

	Related Work
	Parallel skycube templates
	Introduction to template algorithms
	Lattice-traversal-based templates
	Single-thread-single-cuboid (STSC)
	Single-device-single-cuboid (SDSC)

	Point-bitmask-based template
	Multiple-device-multiple-cuboid (MDMC)

	Specialisations for multicore
	CPU lattice-based specialisations
	CPU point-based specialisation

	Specialisations for the GPU
	GPU lattice-based specialisations
	GPU point-based specialisation

	Experimental evaluation
	Environment and setup
	Results and discussion

	Conclusion
	Acknowledgments
	References
	Additional Experiments
	Experiments with real data
	Dataset descriptions
	Results and analysis

	Partial skycube computation
	Experiment setup
	Results and analysis

	A review of skyline concepts
	HashCube compression
	Point-based partitioning

