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Abstract For a graph-based representation of a social network, #mgitgl of partic-
ipants can be uniquely determined if an adversary has bacghkgrstructural knowl-
edge about the graph. We focus on degree-based attackgiwtier adversary knows
the degrees of particular target vertices and we aim to grtthe anonymity of par-
ticipants through-anonymization, which ensures that every participant is\edent
to at least — 1 other participants with respect to degree. We introduce@raland
novel approach of introducing “dummy” participants int@ thetwork and linking
them to each other and to real participants in order to aefil@g anonymity.

The advantage of our approach lies in the nature of the eethat we derive. We
show that if participants have labels associated with thieenproblem of anonymiz-
ing a subset of participants P-Complete. On the other hand, in the absence of
labels, we give arO(nk) algorithm to optimallyk-anonymize a subset of partic-
ipants or to near-optimally:-anonymize all real and all dummy participants. For
degree-based-attacks, such theoretical guarantees\aze no
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1 Introduction

The advent of the social web has brought about an explostrease in the perva-
siveness of large-scale social networks. Embedded witléiset networks is a wealth
of information of multidisciplinary interest for the indugus analyst. However, un-
like many other data, this information is abqople so, it is only ethical to respect
their right to privacy. As a data owner, one must respectgsbate user groups ex-
pect a level of privacy and so that privacy must be provideth&b subgroup if the

data is to be shared with external organizations, if not titeeenetwork. The study

by Ferri et al. [19], for example, reveals that although samser groups are less
concerned by data owners sharing data about them, up to 9@8¢mbers in other

groups disagree with the principle.

If the social network is “sanitized” prior to release, thevacy of individuals
within it can be protected while satisfying the needs of gstal We assume the
network is represented as a vertex-labelled gréps (V,E, X, ¢), with vertices
representing participants and edges representing theredhips between thefhas
shown by Backstrom et al.][4], removing the identifiers frdme graph is insuffi-
cient to guarantee privacy: an adversary can still revealidientity of individuals
by exploiting background structural knowledge that he Hasuaithe network. Fig-
ures[I(d) anfl 1(b) illustrate how degree, the structurgbgmty we study, can be
sufficient to uniquely identify vertices: is the only person with exactly relation-
ships, so stripping his identifier as in Figlire 1(b) does movide him any privacy
against an adversary who knows his degree.

We pursue the well-known alternative bfanonymizinghe social network data
prior to release. If an adversary has some knowledge of atatal propertyP of an
arbitrary individuak: who he seeks to identify, one can conceal the identity-@ind,
indeed, everyone else—by establishing that every indalig.the network is identical
to at least: — 1 others with respect t®. In this way, the knowledge of the adversary
renders at best &/k chance of uniquely identifying. Stated informally, thek-
‘P-anonymizaton problem is thus: given a vertex-labellepgi@ and a structural
propertyP, transformg into a k-P-anonymous grapl’ such thatg’ is as close
as possible tg. (Figureg 1(d) anf I(H) are examplesieP-anonymous graphs for
P=degree.)

Certainly, there are many possible structural propefi@d which the adversary
may have some knowledge. Many of these have been studigdriatlire (e.g.[ 29,
[43[37.39]) and appropriate-anonymization techniques have been developed and
shown to work well in experimental settings. Nonetheldssrd are some pertitent,
fundamental questions for any choic

— Is it possible to produce an optinval?-anonymous graph in polynomial time?

1 We define a vertex-labelled graph as the four-tuple E, X2, £), whereV is a vertex sef C V x V
is a set of undirected edges, is a set of sensitive labels, add: V +— X' is a labelling function that
assigns a label to each vertex. We discuss in the paper tes tffabels, sensitive and identifying. By,
we refer to the former, assuming the latter is stripped froengraph.

2 We mention specific cases in which these questions have Insereeed in our discussion of related
work in SectiorB. Even in these cases, however, not all tuestions have been fully addressed.
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' u
(a) An example unlabelled social network (b) The same unlabelled social network
graph with identifiers for each vertex graph with the identifiers blacked out. Ver-

ticesv andw can still be uniquely identi-
fied because of their degree.

(c) An optimal2-degree-anonymization of (d) An optimal2-degree-anonymization of
the example graph by means of edge ad- the example graph by means of vertex ad-
dition. No longer can vertices andw be dition. As before, verticess and w can-
uniquely identified by degree. not be uniquely identified by degree, but

the method by which this property was
achieved is different.

Fig. 1 An example of2-degree-anonymity by means both of edge- (as in literammd)vertex- (as in this
paper) addition.

— If not, can theoretical guarantees, such as bounds on appati@n ratios, be
derived for non-optimal algorithms?
— Can better theoretical guarantees be determined for $jpdasaes of graphs?

For any choice of adversarial knowledg®,these appear to be quite challenging
problems. Consider the seemingly simple adversary of stuthis work who knows
only the degree of his target. Achievikgdegree anonymitio thwart him was stud-
ied by Lui and Terzil[20], who derived an experimentally effee algorithm. Mean-
while, the works of Chester et al. [11] and of Zhou and Pei pf&r hardness results
of k-P-anonymization for other choices &f. Still, none of these three most closely
related works answer the questions abovekiategree-anonymization on arbitrary
graphs, implying that the problems are still quite nonialifor this adversary.

Thus, here, we introduce a new approach+{®-anonymization, changing both
the way one goes about constructifigand, correspondingly, the optimisation con-
dition. In previous work, the problem formulation has beetransformg = (V,E)
into a k-anonymous grapty’ = (V,E U E’); that is to say, onlyedgesare added
to G in order to construcg’. (See Figurg€ I(¢).) The optimisation condition, then, is
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to minimise|E’|. We embark here on the very natural study of adding mevtices
as well, transforming = (V,E) to ¢’ = (V U V/,E U E/), and minimising/V’|8
(See Figurg I(d)).) For this optimisation problem, we regjthiat the new edges must
have a new vertex as an endpoiftf (C V' x (V U V")); otherwise, the complete
graphK,y, offers an optimal solution withV’| = 0, which is clearly not what we
want. This alternative formulation presents notable tytilUltimately, the intent of
releasing data is to facilitate analysis, and the analgsi®nducted at the aggregate
level. Introducing few new vertices with similar charagdécs to those already in
the network could quite accurately preserve the aggredmteacteristics of the net-
work. Some network characteristics, such as the numberg# lgiques, are exactly
preserved as a consequence of our constraifi on

Perhaps more importantly, however, is that by changing tbklem formulation,
we are able to address the aforementioned three problerasdiegree-based attack.
In particular, we prove hardness fbranonymization against degree-based attacks
on arbitrary, vertex-labelled graphs using this verteditioin model (Theoreriil2).
By fixing the size of the label set to one (i.e., considerini@belled graphs), we pro-
vide an efficient and optimal algorithm for subset anonyigre(Corollary2) and an
efficient, near-optimal algorithm for complete anonymiaat(TheorenfIL). Further-
more, for graphs with certain properties that are likelyrisain social networks, our
optimality guarantee is improved to being within one vedéaptimal (Corollary1).

Our Contributions

We introduce a vertex addition approach ieP-anonymization. For whe® is de-
gree, we offer the following results:

— We introduce for unlabelled graphs @ik « |V|) k-degree-anonymization algo-
rithm based on dynamic programming and prove that, on ariyramnpgraph, the
minimisation of|V’| is optimal within an additive factor df. For a special class
of graphs that is likely to include social networks, the aitdmn is optimal within
1 for reasonable values &f(§B);

— We conduct an empirical evaluation of our algorithm on saMeell-known net-
work datasets, demonstrating that it quite largely prestive utility of the origi-
nal graph with respect to standard structural paramekesliistering coefficient,
average path length and connectivity, eveh approaches percentages6f that
are quite high for the context of graph anonymizatiody;

— We demonstrate that for the more general case of labellgghgrg”| > 1),
k-degree-anonymization with a predetermined number ofexeatditions (the
decision version of the problem) lP-Complete, by giving a reduction from a
known NP-Hard table anonymization problerji).

3 Precise formulations of the problem appear in Sec#@ior unlabelled graphs and in Sectigh 5 for
labelled graphs.
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2 Subset Anonymity and Related Concepts

We begin by introducing the concepts under study in this paye high level, subset
anonymity acknowledges that a certain subset of membersatial network may
be highly identifiable as a group and, simultaneously, neeasaurance of individ-
ual anonymity. For example, consider a social network cangtd from a company
email corpus where each node of the network corresponds éonail address and
each link between two nodes implies an exchange of emailgeest them. The in-
ternal email addresses are likely to have much higher degréde more sensitive
than the external email addresses. The objective of subeayanity is to ensure that
members who belong to an identifiable subset of a social mkfwothis case the in-
ternal email addresses, cannot be distinguished from ghehwith certainty greater
than1/k. This way, although they are identifiable as a group, theyatéentifiable
individually.

We model a social network as an unlabeled, undirected géaph(V, E)ﬁ which
contains amnonymizing subsét C V of vertices which need to be anonymized. The
objective is to produce a similar graph = (VU V', E U E’) in which X is anony-
mous. This differs from previous work, not only in the focus subset anonymity,
but also in the permission to introduce new, “fake” verti€gs.

An important consideration is what it means to d®nymousn a graph. Be-
cause graphs embed copious structural information, anityyaepends on what
background structural information an attacker might hégewe detail in Sectiofll6,
various definitions have been introduced which assume ackait has progressively
more background structural information. Since no work, &esv, considers the im-
plications of expanding the vertex séf we embark on thisoundationalstudy in
which we assume the simplest adversarial knowledge, tleaattiacker knows how
many connections his target has, to contrast our conclgsiith those derived from
previous works which have not permitted an expansion of értex set (i.e., require
V' = 0).

To state the problem formally, we first need to introduce a @efinitions. We
begin by explaining:-degree-anonymity, the focus of this paper:

Definition 1 Thedegreeof a vertexv in a graphg = (V, E) is the number of neigh-
boursithas|{u € V: (u,v) € E}|.

For example, the uppermost vertex in Fighire P(b) has a degreebecause it
is connected té other vertices (neighbours). The rightmost node in the sgiraph
has degreé because it has only one incident edge. This is the informatiat we
assume an attacker possesses.

Definition 2 A degree sequenad a set of vertice¥y/ is the sequencéls, ..., d,)
composed by sorting in descending order the degrees of avelyinV.

Again referring to Figurg 2(b), the degree sequend,8, 3,2, 1,1, 1), the de-
grees of each of the seven vertices sorted in descending orde

4 For simplicity in this section, we regard a graph &@staple. We note that equivalently, for consistency,
we could express an unlabelled grapt@as (V, E, X, ¢) wheredo € X : Vv € V, £(v) = o. However,
the simpler notation simplifies the exposition.
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(@) (b)

Fig. 2 The two small example graphs used to illustrate our anorgtiniz procedure

Definition 3 A k-partitioningof a degree sequence is a partitioning of the degree se-
guence into disjoint partitions such that every degree argie exactly one partition
and every partition contains at legsélements.

Two possible3-partitionings of the degree sequence in our running exasd
((5,3,3),(2,1,1,1))and((5,3, 3,2), (1,1, 1)). There are other possililepartitionings
of this degree sequence that have non-contiguous pasgjsoich a$(5, 3,2,1), (3,1, 1)),
but we will indicate later in Propositidd 1 that these arearéyetter choices for our
algorithm.

Definition 4 A degree sequence fsanonymousf partitioning it into the sets of
distincts elements inducedg:gpartitioning.

That is to say, a degree sequencé:ianonymous if every degree appears at
leastk times in the sequence. Then, a subset of vertices can be dleftedegree-
anonymous depending on their degree sequence:

Definition 5 A subset of verticeX C V is said to bek-degree-anonymous in a
graphg’ = (V,E) iff the degree sequence &f is k-anonymous. Similarly, graph
is said to bek-degree-anonymous if its entire vertex setidegree-anonymous.

This provides sufficient material to define the problem ofigthere:

Problem Definition: Given an input grapty = (V,E) and an anonymizing subset
X, construct a graply’ = (VU V', EUE'), E'N (V x V) = {}, such thatX and
X UV’ are bothk-degree-anonymous & and|V’| is minimized.

Note thatX must bek-degree-anonymous i@’ because it may be readily iden-
tifiable. This corresponds to a scenario whens a small percentage &f andV’
is indistinguishable fronV \ X In other scenarios, say when users opt irKtas
conceived by Yuan et al_[41K could be a large percentage Wfand not readily
identifiable so we would need th&tU V' is k-degree-anonymous to hide the “fake”
vertices amon rather than amony \ X. Thus the need for anonymity within both
subsets.

5 Considering théEnronemail corpus on which we experiment in Secfion 4\1}, > 65000, but only
151 vertices correspond to internal email addresses.
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As a last note, we introduce a couple definitions that areulimf describing the
algorithm in the next section.

Definition 6 The max deficiency of a k-partitioning of a degree sequence is the
largest difference between highest and smallest degré@weihy partition.

For example, taking the tw&-partitionings in our running example, theax deficiency
of ((5,3,3),(2,1,1,1)) is max(5 — 3,2 — 1) = 2 and of((5,3,3,2),(1,1,1)) is
max(5 —2,1— 1) = 3. Finally,

Definition 7 Thetotal deficiency of ak-partitioning of a degree sequence is the sum
over everyd; in the sequence of the difference betwelgmand the largest degree in
the same patrtition.

Using the same example we find that theal deficiency of ((5,3,3),(2,1,1, 1))
is:

(5-5)4+6B-3)+6-3)+2-2)+2-1)+2-1)+(2-1))=7
and of((5,3,3,2),(1,1,1)) is:

((G-5)+6G-3Y+6G-3)+G-2)+01-1D)+01-1H)+(1-1)=T.

3 An Efficient Algorithm to Near-Optimally k-Degree-Anonymize Unlabelled
Graphs

We present here immediately our most encouraging resalt fthn the special case
of unlabelled graphg;-degree-anonymization can be solved very near-optimally i
linear time. We produce/-degree-anonymous graph = (VUV’, EUE’) from an
original, InG’ we require that all the original vertice¥, arek-degree-anonymous-
—and in Corollan[R, we will relax this constraint to an inmubsetX C V. We
also require that the new vertices are concealed as welbsdhidy cannot be readily
identified and removed from the graph in order to recayére., VUV’ is k-degree-
anonymous irg’). As mentioned in the introduction, we seek to mininji€&, while
maintaining the constraint thd C V' x (V U V’). We will prove the following
theorem at the end of this section:

Theorem[d Our algorithm produces &-degree-anonymous gragli containing
the input graphG as an induced subgraph, usiid@(nk) time andO(n) space. The
number of new vertices added is optimal up to an additiveofaaft.

At ahigh level, the algorithm proceeds in three stages. st five design a precise
recursion to group the vertices Ufby target degree (the degree they will havgin
The recursion establishes a grouping such thamithe deficiency, a parametre in
determining with how many nodés must be augmented, is minimised. We evaluate
the recursion using dynamic programming witink) execution cost.
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The second stage is to determine precisely how many vettitesvhich we wish
to augmend in order to guarantee that we caranonymise all olV’. This number
is a function oft andmax deficiency, the parametre arising out of and minimised by
the recursion evaluated in Stage 1.

Finally, we introduce a particular means of adding new edgash of which
has at least one endpointf, with the objective of satisfying all the target degrees
established during the recursion of Stage 1/a@honymizing the new vertices added
during Stage 2. A critical property of our specific approactinat the edges are added
in such a manner as to guarantee tractibility of the problemanonymizing the new
vertices, a problem which may be hard in the general case.

As we describe the three stages of the algorithm in the fatigwubsections, we
illustrate their execution bg-anonymizing the graphs in Figure 2.

3.1 Stage 1: Determining Each Vertex's Target Degree

Our algorithm first proceeds by identifying which verticé®sld have the same de-
gree and what degree that should be. Similar to Liu and T&g}j {ve construct a re-
cursion on the degree sequence&db compute these groups and degrees. Contrary
to their work, however, we minimismax deficiency rather thantotal deficiency,
because, as we prove later in Lem@anyx deficiency tightly lower bounds the
number of new vertices that must be added in ordér-emonymize the degree se-
guence ofG. Thus, we define &-partitioning that minimizesnax deficiency to be
optimal.

To produce an optimat-partitioning of the degree sequence@fwe offer an
incremental algorithm which operates from left (positigrto right (positionn) on
the degree sequence, maintaining the optimal (i.e., withirmim max deficiency)
k-partitioning of those values in the degree sequence seéar.sbhe ability to do
this with O(nk) cost is a consequence of the following propositions:

Proposition 1 Themax deficiency of a partition containing a highest degree &f
and a smallest degree df will be less or equal to thenax deficiency of any parti-
tion containingd; and anyd;,.. or containingd; and anyd;_., Vc € N.

Proposition 2 For any partition(d;, .. ., d;), its max deficiency is greater or equal
to that of the partitiongd;, ..., d;), (d;+1,....d;), fori < j < 1. That s to say, it
never produces a higheinax deficiency when one splits a partition.

Both propositions follow from the facts that the degree semes are sorted and
max deficiency (i.e., difference) is transitive. Importantly, they allas to construct
a recursion, and an incremental, dynamic programming #figorto evaluate that
recursion, because they imply that there are dnlyays to produce an optimat
partitioning of the firstc elements if the best possibtepartitionings are known for
the first: elementsy: < z. From Propositiofi]l, it is clear that theth element
should be added to the right of the fifst — 1) elements. From Propositign 2, it is
clear that if there is an optimal split point for the rightrhpartition that is farther
than2k — 1 positions left ofz, then it can be split into sub-partitions such that the
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rightmost partition begins at some other position at leasaaright asc — 2k + 1.
The rightmost position must also have at Idasiements; so, the rightmost partition
of the optimalk-partitioning on the firstc elements must begin between positions
x — 2k + 1 andz — k, inclusive.

Our algorithm evaluates the recursion “bottom-up”, canging an optimalk-
partitioning of the degree sequence by incrementally agtlie nextz'th rightmost
degree and determining the best possibfartitioning. If there are fewer th&k de-
grees in the sequence, there is not any choice but to gronpdi¢ogether, because
at least2k elements are required to make two partitions of sizé. When, on the
other hand, there are at le@dt degrees, then we evaluate the cost of splitting off a
rightmost partition at any of the positions betweem — 2k + 1 andx — k, inclusive,
and choose the rightmost of the cheapest among them. Wedrhekrecursion by
recognising that thenax deficiency incurred by creating a rightmost partition that
starts at some positians exactly the larger of the best possibigartitioning up to
1 — 1 and the degree differences betweeniftteand x'th degrees in the sequence.

The following recursion evaluates the cost of splitting #ngs constructs an opti-
mal k-partitioning. In the statement of the recursion below,th&inction computes
themax deficiency of a particular partition; th&tart function keeps track of where
2’s partition starts, should be the rightmost degree in it; and tBest function com-
putes the overall costi(ax deficiency) of the best possible partitioning up to thiéh
element. Th&tart function allows us to retrace the best possibieartitioning up to
anyz’th position: the rightmost partition is given B§tart(x), «]; the next rightmost
position is given by[Start(Start(x) — 1), Start(xz) — 1]; &c. Finally, note that we
assumewrgmin returns the maximal point at which a function is minimised.

Let
Cost_Split = M [max(k,z—2k+1),a—k] (Max(Cost(1,4 — 1), A(4, x))),
Pos_Split = argmin, ¢ (ax(k,o—2k+1),2— k) (Max(Cost (1,7 — 1), A7, 2))).
Then,
A(z,y) = do —
Cost(1,z) = A(1, ) if © < 2k,
Cost(1,z) = Cost_Split, if x > 2k,
Start(x) = 1, if x < 2k,
Start(x) = Pos_Split, if z > 2k.

For the graph of Figure 2(b), the degree sequen¢® i 3,2,1,1,1). The opti-
mal k-partitioning of this degree sequenc€(8, 3,3), (2,1, 1, 1)), which we arrive
at by evaluating the recursion, as tabulated in Teble 1.

Two parametres important for the next stages of our algorithise out of the
k-partitioning of the degree sequence, namelx deficiency andtotal deficiency.
As we show later in Lemmid 2, theax deficiency is a lower bound oV’ in an
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Pos 1 2 3 4 5 6 7
Deg Seq 5 3 3 2 1 1 1
Cost(l,z) |O 2 2 3 4 2 2
Start(x) 1 1 1 1 1 4 4

Table 1 The values of the recursion for tBedegree-anonymization of the example graph from Figurg 2(b

optimal solution. We necessarily must bound the valusodl deficiency, because
this allows us to upper bound the number of edges added byhas@xecution cost
of—our entire algorithm.

Lemma 1 Thetotal deficiency of an optimalk-partitioning of a sorted degree se-
quence is upper-bounded by — 1)(2k — 1).

Proof First, note that from Propositig 2 that any optimal pastithg with a partition
sized2k or greater can be split into two partitions such thatitirex deficiency is
not increased. Furthermore, doing so will decreasethel deficiency unless the
contribution of the partition is already zero. So, no oplipertition should contain
2k or more elements.

If [front(d;),end(d;)] denotes the partition containing, [front(p;), end(p;)]
denotes the partition;, and|P| denotes the number of partitions, then the total defi-
ciency of an optimak-partitioning is given by:

> front(d;) — d;
d;

< front(d;) — end(d;)
d;

< (2k-1) Z front(p;) — end(p,)
(2k —1) (front(pl) - end(p|7>|))
(2k - 1)(” - 1))

where the second inequality follows because the deficiennyributed by a partic-
ular degree is certainly no more than thex deficiency contributed by its entire
partition, the third inequality follows becaugent(p;+1) < end(p;), and the fourth
inequality follows because the maximum degree in a simm@elyisn — 1.

3.2 Stage 2: Determiningy, the Number of New Nodes

The next step in anonymizing a graph is to determine prectsalv many vertices
should be added. Ideally, we would add exaatlyx deficiency vertices, because this
is a lower bound on how manyiustbe added, as shown in Lemia 2:

Lemma 2 To k-degree-anonymize a set of verticésC V by means of vertex addi-
tion, one must add at least as many new vertices amthedeficiency of an optimal
k-partitioning of the degree sequenceXf
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Proof First note that any grap@’ in which X is k-degree-anonymous corresponds
to somek-partitioning of the original degree sequenceXafin order to satisfy every
target degree arising from thiepartitioning, some vertex will require as many new
edges as themax deficiency of thatk-partitioning. Also, because edges can only be
added from eaclv € X to new vertices and because we investigate only simple
graphs (i.e., those which do not contain multiple edges éetwthe same source
and destination nodes), clearly these new edges must ddoneex deficiency new
vertices in order to satisfy that particular vertex’s reguient.

From among alk-partitionings of the degree sequenceXof corresponding to
all graphs@’ in which X is k-degree-anonymous, the optimal choice minimises
max deficiency, so also minimises how many new vertices are requirgd.in

However, for security, we anonymize the new vertices as (@akure thav UV’
is k-degree-anonymous @), and this may require adding more thaax deficiency
nodes. Our approach to adding edges we describe in moré idetteé next subsec-
tion, but there are a couple important things to note heraulmzthey influence this
stage. For readability, lebd = max deficiency and lettd = total deficiency. Then,
once every target degree is achieved through edge additiGtage 3¢d(mod md)
of the new vertices will have some degree, calliand the othemd — td(mod md)
will have a degree ofl — 1. If these both appear in the target degrees ofithe
partitioning, the entire grap§’ is k-anonymous. Figurg 3 illustrates an example of
this, where the graph on the left is anonymized by adding dd@&ianal vertex which
coincidentally then has a degrée- 1 that is already present on three other vertices.
On the other hand, if or d — 1 does not appear in the target degrees, the new vertices
need be explicitly anonymized as well. To accomplish this cneate &-anonymous
group of the new vertices by introducing intra-new-vertéges to establish that they
all have the same degree. This requires that: 1) theré assv vertices with which
to form ak-anonymous group; and 2) there are an odd number of new egifice
explain why in the next subsection).

(a) The example graph from Figure 3(a) (b) A 3-degree-anonymization of (a) in
which the new vertex ends up with the
same degree as three vertices from the
original graph, so does not need to be ex-
plicitly anonymized

Fig. 3 An example for which the additional vertex has the same @egsea3-degree-anonymous group
of original vertices
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Both these conditions are satisfied when we add exactly
= (1 4+ max(md, k))(mod 2) + max(md, k)

new vertices to the graph to create a new verte¥setf sizen + m.

3.3 Stage 3: The Edge Insertion

The final stage of our anonymization algorithm is to add negesdto the graph
(restricting the addition to those with an endpointVih\ V, as per the problem
definition), in order to meet the target degrees establigh&lage 1. This must be
done carefully because not any arbitrary approach is gteedrio succeed: the task
of anonymizing a subgraph ot new vertices added in Stage 2 is not generally trivial.
Hence the motivation behind owycling approach: it is designed such that it will
always produces a scenario in which the anonymization ot vertices is of
linear cost.

First, we order then additional vertices (arbitrarily). Lete f (v;) be the discrep-
ancy between thé&th degree in the degree sequence and the largest degree Wihin t
same partition (theleficiencyof the i'th vertex). We then connect the firge f (v1)
of them additional vertices to the vertex correspondingtpthe nextde f (v2) ad-
ditional vertices to the vertex correspondingitg and so on until alln additional
vertices have an edge. This process ends at sgme

We continue with another iteration, this time startingyatind with subsequent
iterations until we have satisfied the deficiency of everyenimdthe original graph.
This is illustrated for the example graph of Fig{ire 2(b) ie fhist five steps of Fig-
ure[4, reading left to right, then top to bottom. Seven edgestine added and they
are done so cyclically from left to right.

I
N
N N o /\' | NI /\' |
o 7u R_r/\tl AT n IATRY
\ - ~o_7 v ~._7 s
~ — ~ —

Fig. 4 3-Anonymizing the example graph from Fig{ire 2(b) with thaelelitional vertices

Because of the nature of theycling procedure, always adding an edge to an
additional vertex that has not yet been visited on that @algr iteration, we can
guarantee that the degrees of the additional vertices hwithin one. In fact, if
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exactlyd iterations are required in order to anonymize the origimapg, then (as we
hinted in Stage 2)d(mod m) of them additional vertices will have degreleand the
remainingn — td(mod m) will have degreel — 1. Because we serviced each original
vertex in turn, we can be certain to not accidentally intiwelihe same edge twice. So,
we have successfull-anonymized every vertex that was in the original grapht®ui
importantly, we have done so in a manner that guaranteeshthaemaining edge-
addition-based problem is efficient and successful bedhese is an odd number of
vertices and the degrees are all within one.

The last detail is to ensure that all the new vertices are sebrasi-anonymous.

As afirstrecourse, if andd — 1 are both present as target degrees from the recursion
in Stage 1, then the additional vertices will already beltmgomek-anonymous
group. Figur¢ B demonstrates that 3-anonymizing the exagmalph of Figurg 2(h)

is such a case, where the additional vertex fits nicely inéd3tanonymous group of
degree 1 vertices.

In the event that eithetor d—1 is not present in the anonymized degree sequence,
we explicitly anonymize the new vertices. For the— td(mod m) vertices with
degreed — 1, we randomly pair them and add an edge between each pair.—f
td(mod m) is even andn > k, we know this is sufficient to guarantee all new
vertices have the same degree (nana@lgs at least: — 1 other vertices.

If, instead;m — td(mod m) is odd, then this pairing will leave out one last vertex,
call it ». Because of our diligence in selecting we know thatn — 1 is even (and
at leastk), so we can add an edge framo each of two other additional vertices so
that all three have degreke+ 1. The remainingn — 3 vertices with degred can
then all be paired off again (sinee — 3 is even) and all additional vertices will be
anonymized with degreé+ 1. Some care must be taken to not accidentally re-add
an edge between additional nodes, but this is really guiteltbecause of how we
proceeded with the preceding edge addition. Fiflire 5 iHibss this scenario. The
degrees (4 and 3) of the two additional nodes are irrecdsieindmd — 1 is odd,
so we instead our algorithm added the extra vertex as in Eigur

Fig. 5 An example in which our algorithm will not optimally 3-degr@nonymise Figuffe 2{p) with only
two additional vertices because of the difficulty resolvihg anonymity of the new vertices

3.4 Algorithmic Analysis

From the algorithm described in this section, we prove tleviong theorem:
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Theorem 1 Our algorithm produces &-degree-anonymous gragh containing the
input graphg as an induced subgraph, usidynk) time andO(n) space. The num-
ber of new vertices added is optimal up to an additive facfdr.o

Proof First, we note that the degree sequence partitioning regiifn) space and
O(nk) time. If this recursion is evaluated bottom-up (i.e., from= 1 toz = n) and
the results are memoised after each iteration, then thdrrgrime is linear innk
because the degree sequence has lengtid for each element of the degree sequence
there is an iteration that will cost at most a comparisoRiplookups ofCost, and
computations ofA for eachi € [k, 2k). The memory cost of the memoization3is
units of memory: an array of sizeeach for storing the results of tli&st andStart
calculations and an additional array of lengtim which the original degree sequence
is kept.

Second, the number of edges added is boundetdiby m, sincetd edges are
added between original and additional vertices; the sule@gnonymization of ad-
ditional vertices never changes an additional vertex'seley more thafd + 1) —
(d—1) = 2; and at least one additional vertex already has a degrée/é introduce
at mostm additional vertices, at most eitherd + 1 or k + 1. k-Degree-anonymizing
V implies, from LemmaR, a lower bound on the optimal numberdufitonal ver-
tices ismd > 1, noting also that any graph withvad of 0 is alreadyn-anonymous.
So, we add at moshd + 1 — md = 1 more vertex than optimal or we add at most
k + 1 —1 = k more vertices than optimal.

Sincem is bounded by: (because neithend nor k can be larger than) and the
td is bounded by(n — 1)(2k — 1), the addition of these edges requit@&k) time.
Since this requires constant memory, the overall spacestis&n).

Note that we assume in this proof that the sorted degree segu=n be pro-
vided based on the representation of the graph. If this isheotase, ad(n logn)
preprocessing step to compute the sorted degree sequdrstarses our algorithm.

Corollary 1 Forinput graphsinwhichi : (d;—1 —d;) > kand(d; — diyr—1) > k,
our algorithm is optimal up to an additive factor of

Proof If 3i : (d;—1 — d;) > k and(d; — d;+r—1) > k, then themax deficiency of
the degree sequence is necessarily at ledsicausel; must be grouped either with
d;_1 ord;y_1 by Propositiofill. Consequently, the scenario in which therithm
adds some number of vertices other thaix deficiency or max deficiency + 1 does
not arise.

This corollary is particularly interesting with respectdocial network graphs,
the degrees of which tend to follow a power law distributi@h [

3.5 On the Security of’

Perhaps an attacker’s best chance at deconstructing onymimation comes from
cycling through all possible choices of the new equivaletiesses {-anonymous
groups), removes them from the graph and then runs our #igoto check if the
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output matches the original anonymized graph. We note twatthe last step where
the adversary has to check if the output graph is the "samgieaisitial anonymized
graph requires an algorithm for checking graph isomorphismefficient (polyno-
mial time) algorithm is known for this problem. In additiotmere are examples in
which an equivalence class of additional vertices is mevg#ddan equivalence class
of original vertices because they have the same degree anthef the anonymiza-
tion procedure. For such graphs, this attack will not be &bkxtract the additional
vertices only.

4 Experimental Evaluation of the Utility of G’

Our algorithm, and indeed a vertex-addition approach ireganoffers many ad-
vantages in terms of theoretical guarantees. In SeCfigrf&.4€xample, we proved
asymptotic performance and near-optimality.

If we consider again the motivation for anonymizing the ratain the first place,
it is because ultimately we want to release it for analysisthe case of an unla-
belled graph, this is necessarily structural analysis.peserving the utility of the
released data by not especially disrupting the structratacteristics of the graph
is important. Thus more theoretical guarantees that otex<xddition model offers:
the number of cliques of size 3 is exactly maintained betweeh andG’. More
broadly, for any monotone property of a graph, our approachanly possibly add
false positives, never generating false negatives.

However, there are interesting non-monotone properties, Ih particular, for
clustering coefficienaverage path lengthand thehop plotof a graph, the effect of
any anonymization procedure is more difficult to predict evpadit-dependent, but the
properties are focal points of other anonymization andsdo&twork analysis papers.
In this section we present an experimental study in two pEHrte what extent the
application of our algorithm in the previous section digaupe utility of the network
with respect to these less predictable properties.

First, we investigate the scalability of the algorithm withspect to how well
graph characteristics are preserved with increasinglyagheling test scenarios (Sec-
tion[41). Then, in Sectidn 4.2 we investigate how well graphracteristics are pre-
served in the context of alternative approaches.

4.1 Scalability Tests
4.1.1 Metrics and Setup
Before describing the results of our experimental evatuative first detail our ex-

perimental setup. In particular, we describe the choiceathgkts and metrics, and
the implementation and machine details.

DatasetsFour datasets from diverse domains form the subjects of mpireal
study. We use one large dataset that represents an emailwtication network in
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a company (namely, Enron) [26]. Additionally, we selecetpther datasets that we
expect to exhibit near worst-case behaviour. Neg¢ Sciencgraph [34] has a large
discrepancy in degrees and thus incurs substantialdeficiency andtotal deficiency
during the anonymization process. TReefuse[23] and Football [20] graphs are
small, so the effect of adding nodes and/or edges has a lpegeentage effect on
the properties of the graphs. The properties of these datase shown in Tablg 2.
Note that Net Science, in particular, has been remarked t@ $teong test set for
network analysis by Leskovec et dl. [27]. The Enron dataset @btained from the
Stanford SNAP repositoﬁ/and the Net Science and Football datasets were obtained
from Mark Newman’s repositoﬂc

Graph Nodes | Edges | APL | CC

Enron 36692 | 183831 | 3.39 | 0.09
Net Science| 1589 | 2742 5.76 | 0.69
Prefuse 129 159 3.16 | 0.07
Football 115 613 251 | 0.61

Table 2 Structural Properties of Datasets for our Empirical Study

Metrics We measure the distortion introduced by the algorithm vimesanetrics
which are commonly studied properties in the social netvitekature according to
the survey by Chakrabarti et &[] [7]. The three metrics weysare defined below.

1. Clustering Coefficient (CC)]5]: Informally, clusterirgpefficient measures the
percentage of paths of leng2hwhich are also triangles. This metric in some sense
measuretriadic closureof graphs—social networks are known to have significant
triadic closure (friends of a person are also likely to knaaele other). More
formally, for all ordered triples, v, w € V,

H{u,v,w €V : (u,v) € EA (u,w) € EA (v,w) € E}||

ce = [{(w,v,w € V: (u,0) € EA (u,w) € E}|]

2. Average Path Length (APL): This metric is a measure of #peeted path length
in the graph between any two randomly chosen connectedtgsril his metric
is highly relevant as it is directly related to tk&x degrees of separaticdhat is
known to exist between randomly chosen people in social arétsy since the
study of Milgram [33]. Define a predicaté(u, v) to betrueif « andv are con-
nected in the graph anthlse if they are not connected. Defi@P = {(u,v) :
C(u,v) = true} to be the set of all the pairs of vertices that are connected. W
define the average path length to be:

> (uwecp PathLength(u, v)

| CP |
We assume thaPathLength(u,u) =0 forallu € V.

APL =

http://snap.stanford.edu/data/
http://www-personal.umich.edu/ ~mejn/netdata/

~N o
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3. Hop Plot[18]: The connectivity of a graph can be graphyoalodeled using the
hop plot The hop plot studies reachability for each path lengtiror a given
value ofk, the hop plot displays, summed over all the vertices, the barmof
nodes reachable from that vertex using paths of length at lmd$he maximum
value for any value of is n? wheren is the number of vertices in the graph. The
smallest value of for which the maximum value of? is reached is thdiameter
of the social network, the path length using which any twoe®oid the graph can
reach each other. Changing or distorting the connectiviitg graph drastically
would change the shape of their hop plots. This is the mairvatain behind
studying these plots.

Experimental SetuA java implementation of the algorithm was used to measure
the distortion based on the metrics for the five chosen datasdined earlier in this
section. The resulting graphs were manually verified té&1amonymous. All exper-
iments were performed on a quad-core Intel Xé&dard0 2.33G H z processor with
4M B of L2 cache andG B of RAM.

Experimental studies in literature typically study smalues ofk (close to3
and rarely everi00). We varyk as a fraction ofn for our experiments, while still
maintaining that: < d. For large and midsize datasets, we varfrom & = 0.25
up to2% of the number of nodes in the graph. For the two small datgsstis over
100 nodes), this is too refined, so we véarjrom & = 1 up to5% of the number of
nodes in the original graphs. For the large and midsize de2$; of the number of
nodes would still translate to values 0f80 to 720 which is a substantial number for
the context.

4.1.2 Results and Discussion

‘ ‘ ‘ ‘ ‘ ‘ —0—‘CC ‘ ! ‘ ‘ ‘ ‘ ‘ 49‘7 cC ‘
0.9 __— = = Original Graph |4 0.9 __7 — — Original Graph |4
08 1 08 1
0.7 1 071
06 06

05 05

0.4r 0.4

Clustering Coefficient
Clustering Coefficient

03r 1 03r
0.2 1 0.2

01lF o - - e = e = = e = = = 0.1fF

. . . . . . 0 . . . . . . .
0.4 0.6 0.8 1 12 1.4 16 18 2 1 15 2 25 3 35 4 4.5 5
k (Percentage of n) k (Percentage of n)

Fig. 6 Distortion of CC of Enron dataset as a Fig. 7 Distortion of CC of Football dataset as a
function of k function of k

We first discuss the results of the experimentation on alungtecoefficient. No-
tice first the plots for the Enron (Figuké 6) and Football (F&[7) datasets, which
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are examples of very good performance. The horizontal &adeesents the value of
k as a function of the number of nodes in the dataset. The akaigs represents the
clustering coefficient. Zero distortion would correspoadtte solid line, which rep-
resents the characteristics of the anonymized data, gx@acttlaying the dotted line,
which represents the value in the original dataset. Theopmdnce of our algorithm
on the Football dataset and for larger values:ain the Enron dataset is excellent
because it very nearly achieves this perfect overlay.

2 T T T T T T T T 1

——CC —s—ccC
181 = = = Original Graph || 091 — — — Original Graph|4

16 1 0.8

S o6
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04r

Clustering Coefficient
e e - v
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0.4 0.6 0.8 1 12 14 1.6 18 2 1 15 2 25 3 35 4 4.5 5
k (Percentage of n) k (Percentage of n)

Fig. 8 Distortion of CC of Net Science dataset Fig. 9 Distortion of CC of Prefuse dataset as a
as a function ok function ofk

Our performance with respect to clustering coefficient endther two datasets,
Net Science and Prefuse, is depicted in Fidure 8 and Fldurespgectively. That
the opposite effect was observed on each datasétiasreased demonstrates the
unpredictability of the effect of anonymization on clugtercoefficient. In this case,
the results match intuition, because of the properties efdataset. In particular,
Net Science has a high clustering coefficient originally;tlo@ other hand, Prefuse
features a couple nodes with especially high degree relétivthe other nodes, so
each newly added vertex is connected to a large percentageyofal nodes. This is
necessary in order to balance out the very highmd ratio at higher values of.

Next, we discuss the results of the measurements on avesadlgdemgth. The
plots that we have created are to be interpreted in the sampeenas those just seen
for clustering coefficient. That is to say, perfect perfont@occurs when the solid
line, representing the anonymized graphs, overlays thtedidine, representing the
value in the original graph. We again start by showing oufgrerance on the Enron
(Figure[I0) and the Football (Figurel1l) datasets, to detretesespecially good
results.

It is worth noting again the unpredictability of these metriThe average path
length on the Football dataset, unlike any of the othergsrisa the anonymized
graph. We note that the only especially large differencevben the original graph
and anonymized graph occurs on the Net Science dataset€Ei@), which has a
relatively high original average path length compared &dther datasets. Although
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Fig. 10 Distortion of APL of Enron dataset as  Fig. 11 Distortion of APL of Football dataset
a function ofk as a function ok

there is a noteable change on the Prefuse dataset (Eigufier £3)- 2%, it decreases
at a very slow rate for all subsequent valées 2%.
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9r — — — Original Graph |{
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15F
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k (Percentage of n) k (Percentage of n)

Fig. 12 Distortion of APL of Net Science Fig. 13 Distortion of APL of Prefuse dataset as
dataset as a function &f a function ofk

The final set of experiments that we ran on the structurabdien of our algo-
rithm for non-monotone properties was in measuring the Hopagb the graphs. The
structure of these plots is different, but the interpretais similar. For each value
of k, a separate line is depicted. Additionally, one line deptbe hop plot for the
original graph. Because the number of vertices changedinég cannot possibly
overlay each other. Instead, good results are indicatetidgimilarity of theshape
of the curves. The results on the Enron (Fidurke 14), Footeajure 1%), and Prefuse
(Figure[1T) datasets demonstrate especially good perfareydecause the shape of
the curve is consistent despite its increasing max value.

Notice that the hop plot lines for the Football dataset iyadwloverlay each other:
this is because the number of additional nodesequired to anonymize the dataset
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Fig. 14 Distortion to the hop plot of Enron Fig. 15 Distortion to the hop plot of Football
dataset for several values bf dataset for several values bf

is quite small. The Net Science dataset (Fidure 16) has a lophat varies more
substantially after anonymization. Again, however, mdgh@ change occurs at a
low value ofk; for subsequent, higher values, not much more change iesgad.
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Fig. 16 Distortion to the hop plot of Net Sci-  Fig. 17 Distortion to the hop plot of Prefuse
ence dataset for several valueskof dataset for several values bf

A last comment from our scalability evaluation is with resfpi® execution time.
Indeed, we proved good asymptotic performance, but, nefesth, absolute running
time is always a curious measure. For the largest datasedrfthe running time for
the actual anonymization took a little over one minute ¢econds) for all the values
of £ in the plots, reflecting the proven efficiency of the algaritirhe running time
reported is the average 6findependent runs of the algorithm for each valué: of
The evaluation time was dominated by the naive computatidheometrics on the
original and distorted graphs. These took aliiuto 30 minutes each. The times on
smaller graphs were much lower and had the same trend whethputation of
the metrics dominated the running time.
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4.2 Comparability Tests

Although there are . Compare to the state-of-the-art edged-degree-anonymization
algorithm [29]. Evaluate whether the vertex-based apgrdizat we introduce is em-
pirically competitive in terms of what is known about the edapsed approach.

4.2.1 Methodology

An experimentwas run earlier by Ying et al. [40] to compargitfdegree-anonymization
of Lui and Terzi[29] to an approach that randomly adds anconass edges to pro-
vide anonymity through obscurity. Our methodology for campg to the algorithm

of Lui and Terzi is to run a series of experiments identicakthof Ying et al. and
compare the performance of our algorithm to these publishkebs. Thus, as before,
we anonymize the entire vertex s&t,

DatasetsWe conduct the experiments on the sapwblogs dataset[[l1] used by
Ying et al., which we obtained from the Carnegie Mellon CAS@ﬁositorﬁ. The
dataset consists @222 vertices, each corresponding to a political bbpgand16714
edgeqb;, b,) indicating that a hyperlink existed frobp to b; and/or fromb; to b;. In
other words, the dataset is an undirected citation network.

Metrics Ying et al. evaluate four metrics that were presented in tmeprehensive
review of network characteristics by Costa etfall [13]. Weleate three of these; the
modularity measurey), on the other hand, does not apply in our case because we
assume vertices are all of the same type (i.e., unlabelad)it ®valuates the extent

to which the network is modularized by vertex type.

1. Transitivity Measure) [5]: The transitivity measure used by Ying et al. is ex-
actly theclustering coefficierthat we introduced in Sectidn4.1. We will continue
to refer to this as the clustering coefficient of the graph.

2. Harmonic Mean of the shortest pati) [25]: Theharmonic meaiis an evaluation
of connectivity, similar to theverage path lengtthat we used in Sectidn4.1. Let
d;; be the distance of the shortest path from veftexvertex;, or oo if they not

connected. Then,
1

1 1
b VY= 2 g

3. Subgraph Centrality9C) [17]: The subgraph centralitys an evaluation of how
many (not necessarily simple) cyles emanate, on averame dach vertex, where
each cycle is weighted by the reciprocal of the factoriatefength. LetiV; be
the number of walls of length/ that start and end at vertex The subgraph

8 |http://www.casos.cs.cmu.edu/computational tools/dat asets/external/polblogs/index11.php
9 Recall that a walk is any sequence of adjacent edges, imguitiose which revisit edges and/or
vertices.
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centrality is the following convergent infinite summatierhich converged to the
precision we report in these experiments at a lengthrofl 20:

V] oo

1 W}
Sczmzz T

1=1 =2

Experimental Setuhe experiments are conducted identically to those in oair sc
ability tests (Section4l1), except that we instead Viatiyrough integeré € [2,10],
for precise compatibility with the study by Ying et al.We ogpall values to the same
precision as offered by Ying et al.

4.2.2 Results

The results for the comparability study are disclosed inl@&bbelow. Each row

of the table corresponds to an experiment with a differeabgimity threshold. Each
columnindicates the measured value for the correspondaphg-haracteristic. Each
characteristic is reported twice, once corresponding te@ge-addition algorithm
and indicated by the suffbE and once corresponding to our node-addition algorithm
and indicated by the suffix/. Perfect performance in a row would be indicated by
achieving exactly the same characteristics as in the @igjraph (thek = 1 row);
deviation in either direction is undesirable.

SCV SCE

CC-V | CC-E* || h-V | h-E* || (x1029) | (x1029)

k=1 | 0.226 | 0.226]] 251 | 251 1.21 1.21
k=2 | 0.219| 0.225]] 251 | 2.50 1.30 2.73
k=3 | 0.215| 0.223|] 2.49 | 2.48 1.41 1.87
k=4 | 0.207 | 0.224 | 2.48 | 2.49 2.16 3.61
k=5 | 0.205| 0.221(] 2.48 | 2.48 2.88 3.40
k=6 | 0.200| 0.222 || 2.46 | 2.47 2.66 1.45
k=7 | 0226 | 0.220 || 2.46 | 2.46 5.55 6.94
k=8 | 0.190| 0.219] 2.45 | 2.46 5.37 6.25
k=9 | 0.185| 0.221] 2.44| 2.49 11.0 4.46
k=10 | 0.183| 0.221 (] 2.43 | 2.46 8.25 4.04

*Values for edge-addition (E) taken fromn [40].

Table 3 Values ofclustering coefficienfCC), harmonic mearth), andsubgraph centralitySC), respec-
tively, for thepolblogsdataset after applying-degree-anonymization by means of vertex addition (V), as
in this paper or strictly edge addition (E), aslin][29]. Thevio = 1 represents the original characteristics
of the graph (i.e., only a guarantee bBnonymity). Note that the scale is changed for the two cokim
reportingsubgraph centrality

4.2.3 Discussion

The results of the comparability experiments are very eraging. Our algorithm
does not rely on any randomization, yet still performs vesgnto the edge-addition
algorithm on the first two attributes. Folustering coefficiemur algorithm is within
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0.018 of the edge-additions values, on average, with a standar@te across
points of0.015. This is very close, considering the precision of the experits is
reported only to withir).001. For harmonic meanthese numbers are even closer:
© = 0.01 ando = 0.02 with an experimental precision 6f01.

These values are closer even than they seem because of doeniaation that is
involved in the edge-addition algorithm. Whereas our atpar will always produce
the same values for these characteristics, any valuestegifor the algorithm of Lui
and Terzi are subject to randomness and could be eithertoglmver on any subse-
guent run of the experiments. This suggests that eitheioapprtok-anonymization
can produce anonymous graphs that have similar structoaafcteristics.

Results for the final metric under consideratienbgraph centralityare some-
what inconclusive. Our algorithm outperforms the edgeitaatdon all but one case
prior to k = 9. This is reasonable to expect, because adding edges terexistdes
is more likely to create new, short loops than is adding etly&ske” nodes and the
addition of new nodes by our algorithm increases the denatmirio help stunt the
growth of the numerator. For the highest value# df and10, the edge-addition has
an unintuitive40% leap in performance in contrast to our predictable degiadat
Consequently, it is difficult to extrapolate what might ocwaith this metric in new
experiments.

5 A Hardness Result for Subset Anonymization on Labelled Grphs

Until this point, we have been considering the special cdsentabelled graphs.
For example, we stripped the political lean labels from plodblogs dataset dur-
ing our experiments. In this section, we increas# and study the tractability of
k-anonymization against degree-based attacks. \With> 1, the nature of a degree-
based attack changes, because the adversary may know themfroutbound edges
from a target to vertices of each label. So, a stronger anonymity notigadsiired.
(See Figuré18.) Also, we recognize that often it is not treethakveryvertex need
be anonymous (for example, see the work of Yuan et al. [4b]);ansidersubset
anonymizationWe begin by formally defining the problem for the labelletting.
Note that for| Y| = 1, this reduces to the problem introducedfB

The analogue in the labelled setting of a degree sequendahiglsequence:

Definition 8 (Label sequence)orv € V, we say thatS, = (I1,l2,...,0l,) is @
label sequence for if it corresponds to some ordering of the labelsvoénd the
vertices that are adjacent to We will consider label sequences of vertices to be
equivalent up to reordering.

The four label sequences in the example of Fijure 18(a)xlankwise from the
bottom left, are((v,v), (v, v, u), (v,u,u), (u,u)). Then,k-anonymity for labelled
graphs relates to the uniqueness of label sequences:

Definition 9 Given a vertex-labelled graph = (V,E, X, ¢), a subsetX C V of
vertices isk-sequence-anonymousé¢hif for every vertexv € X, there are at least

k — 1 other vertices inX whose label sequence is the same as the label sequence of
V.
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(@ A example 2-degree-anonymous
vertex-labelled graph that can still be
attacked by label sequence

a b a b
a b
- —-——-—————————— b N )

N 7z

\\ //
b‘ .a
(b) The example vertex-labelled graph (c) The example vertex-labelled graph
made to be2-sequence-anonymous by made to be2-sequence-anonymous by
means ofdgeaddition means ofvertexaddition

Fig. 18 An example of2-sequence-anonymity. Notice thzidegree-anonymity (Figufe 18[a)) is insuffi-
cient to guarantee anonymity in a vertex-labelled setting.

We denote by, = v that vertices: andv have the same label sequence. Cleatly,
is an equivalence relation and hence induces a partiipe= of X into equivalence
classes. IfX is k-anonymous irgj, every equivalence class is of size at Idasthen,
the problem oft-sequence anonymization is defined as:

k-LABELLED SUBGRAPH ANONYMIZATION
Input: A vertex-labelled graply = (V,E, X, /), a setX C V of vertices, and an
integert.
Question:Is there a vertex-labelled gragh = (VUV/, EUE’, YU X", £U{') such
that|V/| < ¢, E' C (Vx V)U (V' x V'), X, = X, (], = L andX is k-anonymous
inGg’'?

That is, can wek-sequence-anonymizg by adding at most new labelled ver-
tices? New edges must have at least one endpoWit.in

Theorem 2 k-Labelled Subgraph AnonymizationN#-Complete foik > 3.

Proof To show that this problem iNP-Hard, we build a reduction from the following
anonymization problem on tables that was shown té&vBeHard by Meyerson and
Williams [32]:

k-ATTRIBUTE-ANONYMITY
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Input: A tableT with n rows and columns (also called attributes) with entries over
{0,1} and integer$ andk > 3.

Question: Can the rows ofl" be k-anonymized by suppressing at mosttributes of
T? An attribute is said to be suppressed if all its entries (Dgrare replaced by *.

Reduction: Our reduction is described as follows:
Given a TableT, let T(,, ;) € {0,1} denote the value of attributgin row m.
Then, the vertex-labelled gragh- corresponding td" is constructed as follows:

- Vp = {rl,rg,...,rn}u{cﬂl <j<lie{0,1}}.

LetEr = {(rm, ¢})|T(m,j) =i} wherel <m <n,1<j <landi € {0,1}.
Y={RyU{A1 <j<lie{0,1}}.

{(ri) = Rand((c;) = A}.

Finally, remove all isolated vertices frofx.

=
o
[ V)
N
w

Entry

[y

o|a| Ml w|n

NI =K==}
o|o|o|lo|r|o
Rlo|r|k|r|r

Fig. 19 An example tablél’ and its tranformation into a graghr

In other words, we encode a binary table as a graph in whictvaeaexr,,, with
label R is connected to a column verteX (c}) with label A (A}) if the (m, j)th
entry is 0 (1).

Let X = {r,...,r,} denote the set of row vertices Gf. We will show that
T can bek-anonymized by suppressing at mesittributes if and only if we can
k-anonymizeX by adding at mos2¢ new labelled vertices.

Let G}, be any graph obtained frogir such thatX is k-anonymous irg/.. We
will now show that we may assume without loss of generadity,satisfies a set of
properties. If it does not, we convert it into one that sassthe properties without
increasing the number of new labelled vertices addeglin

Our first lemma shows that the anonymization procedure dogisitnoduce ver-
tices with new labels not itvr. Furthermore, none of the new vertices added+to
will be labelled byR.

Lemma 3 X} = Y and//.(v) # R for anyv € V.

Proof Suppose there is at least one vertex with a new lablek? X1 in G/.. Let

Y be any equivalence class &f/ =. Every vertexy € Y has the same number
of labels! in its label sequence ig}.. Therefore, the label sequences of all vertices
in Y will remain the same after all the new vertices with labale removed from
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G- Since this is true of any equivalence claSswe can assume that;, = Xr.
To show that’;(v) # R for anyv € VI, note that the labek does not appear in
the label sequence of any vertex¥fin Gr. In addition, R must appear the same
number of times in the label sequence of any verteX’ah G/.. Therefore, by the
same reasoning as above, all new nodes with the BbelG/. can be removed and
Y will remain k-anonymous.

Lemma 4 For everyi, i € {0,1}, and everyj, j € {1,2,...,1}, the label A’ ap-
pears at most once in the label sequence of a vertex oimthe graphG’..

Proof Let Y be any equivalence class af. All vertices inY have the same label
sequence ig}.. If a IabeIA;i appears in the label sequence of a vegt@t Y in G,
we can assume that no edge betwgemd a new vertex IabeIIeA§- is added ing’..

If not, this label will appear more than once in the label same ofy and hence in
the label sequence of every other verteXofAlso, the number of occurrences of this
label in every label sequence will the same. Since at mosbobtiese will be due to
an edge ofjr, for each vertex in Y, we can remove all but one edgelir- U E/;
betweenv and a node Iabelleel§ in G and still preserve anonymity of vertices in
Y.

Lemma 5 For everyi, i € {0,1}, and everyj, j € {1,2,...,1}, at most one new
vertex with the IabeA;'- is added in the graply/;..

Proof Suppose not. We merge all the new nodes with the IA@e'xhto a single node.
This only reduces the number of new vertices added with Ia@eln Lemmd4, we
have shown that every Iabﬂlé- appears at most once in the label sequence of every
vertex in X. Therefore, the merge operation will not create multiplges=dand all

the label sequences of the verticesXfwill remain the same as before after this
modification.

Lemma 6 All new vertices appear in pairs. Thatis Af € /(V’;), thenA} € £(V7)
and vice versa.

Proof Suppose a new vertex with the Iab@j is added. Let us consider all the ver-
tices in X to which this vertex is adjacent @;.. Then one of those verticesmust
be in an equivalence cla3sthat had a vertex’ with an edge to vertex with Iabelg-’

in Gr. If there is no sucly’, it implies that all the vertices itX adjacent to this new
vertex had the Iabeajl- in their label sequence before anonymization. Therefoee, t
new vertex with the IabeA(]? can be removed and all equivalence classeX afill
remaink-anonymous. Now note thathas bothA? andA; in its label sequence in
G'+. Hence, the anonymization procedure must create a neV\X\AatteIIedA; and
add an edge betweeri and this new vertex to preserve anonymity.

We now give a proof of correctness of our reduction.

Lemma 7 T can bek-anonymized by suppressingttributes if and only if the subset
X of vertices inGy can bek-anonymized by addirf new vertices.
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Proof (only if:) Suppos€eTl can bek-anonymized by suppressirgattributes. For
every columnd; that is suppressed, we add two new vertiﬂ@sandA} and add an
edge from every row vertex labellgito one of these new vertices that was not in its
label sequence originally. At the end of this procedure sétof rows ofl’ formed a
k-anonymous group, the corresponding set of row verticés form ak-anonymous
group. To do this, we addett new vertices.

(if:) As shown in Lemmadl6, we can assume that the anonymizgiocedure adds
new vertices in pairs. If the procedure adds a new 4}, A}), then suppress the
columnA; in T. Note that if2¢ new vertices are added #, ¢ attributes are sup-
pressed ifl. At the end of this procedure, it is easy to see that if a setwfuertices
in X form ak-anonymous group ig/., then the corresponding set of rowsDfare
k-anonymous.

We now remark that this problem is also NP. At the first glance, this is not
clear as there is no natural bound on the intggierterms of the size of the graph
G. However, based on Lemmd&3 3 4dd 4, it is clear that we can assitiout loss
of generalityt < |X|. Therefore, a membership in this language can be shown by a
list of at most|.X| new vertices and a list of new edges. Therefore, this prolidem
NP-Complete. This completes the proof of the theorem.

As a last note on the subject of tractibility, we remark that algorithm given
earlier implies tractibility (in fact, describes &\nk) algorithm) for the analogous
subset anonymization problem on unlabelled graphs. Ingdke of subset anonymiza-
tion, the new vertices need not be also anonymized. The gmold interesting from
a practical perspective, because it is non-obvious for aeradry to distinguish be-
tween vertices oV’ and of V \ X.

Corollary 2 k-Labelled Subgraph Anonymization isfif | X| = 1, for all k.

Proof This follows from the algorithm irff3, because anonymization of a labelled
subgraph with an alphabet size bfs equivalent to anonymization of an unlabelled
graph simply by removing all the labels, performing the beléed anonymization,
and then relabelling every vertex. Becab8e) X = (J, the third step of the algorithm
presented irf3 is not required. Consequently, exactiyx deficiency new vertices
are sufficient to anonymiz&, because the additional vertices were required for the
anonymization olV’.

6 Related Work

The notion ofk-anonymity was introduced by Sweengy|[36] within the cohtex
relational databases, with the insight that tabular miatadould be published with-
out compromising privacy if every tuple of a relation was maal look identical to

at leastk — 1 other tuples with respect to identifying and quasi-idsfini§) attributes.
Subsequent to this, work by Meyerson and Williams [32] andAggarwal et al. [[2]
demonstrated hardness floranonymity of tables, even if the quasi-identifiers come
from a small-sized alphabet. Outside the relational matel privacy of statistical
tables was studied towards inference confral[14,21, 35].
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Later, the desire to publish microdata for— and, consedy#re concern of pri-
vacy with respect to— other types of data emerged, partiguiar the growing body
of social network graphs. The knowledge transfer from thatignal database com-
munity to the study of social networks was pioneered by Backset al. [4], Zhel-
eva and Getoof [42], and Hay et al. [22], who formalised th&t fiotions of attacks
against social network data.

This sparked a series of works on developing algorithms fiongmity against
progressively stronger adversaries, originating withstinely of Liu and Terzi[29] on
degree-based attacks in unlabelled graphs and of Zhou af#BPen neighbourhood
attacks in vertex-labelled graphs. Both of these papeesexrffan experimentally ef-
fective algorithm, while the latter also offered a prooffP-Hardness. The empirical
merits of this approach was verified by Ying et al.1[40], whondastrated that delib-
eratek-anonymization can preserve structural characterisfiggaphs much better
than adding random noise does. Subsequently, Thompsonemn@¥] studied-hop
degree-based attacks. That is, an adversary’s prior kg@lecludes the degree of
the target and the degree of its neighbors withiops. They develop an inter-cluster
matching method for anonymizing graphs against 1-hop kd&tdwough edge addi-
tion and deletion. Cheng et dl/[8], in their work éfisomorphism, formk pairwise
isomorphic subgraphs to achieve protection against twoifspelasses of attacks.
Wau et al. [39] proposed the-symmetry model, wherein for any vertexthere exist
at leastk — 1 other vertices to which can be mapped using an automorphism of the
underlying graph.

Each of the above adversarial models assumed that an adyersgective was
so-calleddentity disclosurethe identification of a vertex. Another attackaitribute
disclosure which seeks not necessarily to identify a vertex, but teatsensitive
labels of the vertex. In the context of relational databatigés sort of attack was
formalised by Machanavajjhala et dl. [30] with the introtloie of I-diversity as an
anonymity measure, which requires that at Ieaattribute values appear in each
equivalence class. Li et al._[28] then introdudedoseness, which required instead
that thedistribution of attribute values in each equivalence class was witluihithe
entire dataset. More recently, Chester and Srivastavateddipese ideas for social
networks with the introduction af-proximity [12].

The need for these progressively stronger adversarial imgtiams from the dif-
ficulty in deriving an analagous notion for equivalence gfl&és when adopting the
k-anonymization model from relational databases. Despliteese results, our three
guestions from the introduction of hardness, approxinmagjoarantees, and class-
specific analysis are unaddressed for the majority of thesgets. Our work here,
and, indeed, our introduction of a vertex-addition apphp@ meant to deepen un-
derstanding of the known adversarial models in the same erahat the work of
Agarwal et al.[[2] and of Meyerson and Willian{s [32] did in tredational database
setting.

Subset anonymity is a relatively new consideration. Stbie Yuan et al.[[41]
and by Ferri et al[[19] reveal that privacy concerns and saeed varied across and
among different user groups. This has prompted a couplereearks [9/11] that
consider the more generalsubset-anonymity.
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Another set of related works is as follows. Konig[[24] shovtieat, given a graph
G with maximum degred, it is always possible to convegtinto ad-regular graphl
such that is an induced subgraph &F. In a subsequent paper, Erdés and Kelly [16]
strengthened the result of Kdnig by giving an efficient aidpon to determine the
minimum number of new vertices that must be added to obtain such a grapH.
This results were extended by the more recent the work ofakiy et al [[B] and Bod-
laender et al[6]. This result can be viewed as an optimaegree-anonymization of
G. Our approach in this paper can be viewed as a generalisatibese results with
two relaxations. First, as discussed by Yuan et[all [41], veg nequire that only a
subset of nodes be anonymized. For example, different pdwe different expec-
tations of privacy and some may not be concerned if they caridentified in the
anonymous graph. Second, we requiranonymity of the graph for an arbitraky
(which we typically assume to be some reasonably small valueh less than).

Our work here and the above referenceskeanonymization, encompass at a
high level “data anonymization” methods. These methodstfaimsform the data and
then release them. We note lastly that there is another gkfaenily of methods for
achieving data privacy, which does not release data, biltersonly the output of
an analysis computation. The released output is such tisavéry difficult to infer
from it any information about an individual input datum. Tdiferentially-private
methods (e.g.[T16,31]) belong in this family, which has acndifferent objective
than anonymization.

7 Conclusion and Future Work

In this paper, we focused on the problenkedegree-anonymizing a subset of a graph
G to protect against a degree-based attack. We establiskedetital results that
hold for any input graph by introducing a natural alternativ the formulation of the
problem present in literature. Specifically, we introdueackrtex-addition approach
wherein, giverg = (V, E, X, /), the new graply’ = (VUV’, EUE’, JUX’ (Ul') is
constructed such théY C V' x (V/'UV). The optimisation constraint is to minimize
[V’|, which ensures tha’ is near tog.

Within this setting, we established thatlegree-anonymizing a given subXetf
V fork > 3is NP-Complete, unless¥| = 1. For| Y| = 1, we gave an efficient, exact
algorithm for subset anonymization &f and an efficient, near-optimal algorithm to
alsoensure thei-degree-anonymity of alk U V’. Existing techniques in literature
provide no characterisation of tractibility nor approxtima guarantees.

Furthermore, we demonstrated empirically that the restdfeaphG’ of our algo-
rithm is quite near to the input graghwith respect to five structural characteristics
of graphs. We contrasted the output graphs for our algonitititnthose produced by
the state-of-the-art algorithm which does not allow a veget expansion, achiev-
ing highly comparable performance. This suggests thatenex-addition approach
performs well in real-life in addition to the strong theadcat claims that we have
proven.

The success here implies that there are interesting résémections with which
to extend this work. We focused on foundational work with mper adversarial
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model to establish the credibility of adding “fake” verticeClearly, extending the
algorithmic work to more challenging adversaries would k&l worthwhile since
structural graph characteristics that may equally welsereed by doing so. Our
hardness result dictates that an appropriate pursuit ®rc#se of vertex-labeled
graphs would be to design approximate or heuristic algemith Finally, another re-
search direction would be to enhance the algorithm by adelitygs among”’ x V’
during the third step of our algorithm in a utility-orientagproach such as that in-
troduced by Wang et al. [38].
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