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the degrees of particular target vertices and we aim to protect the anonymity of par-
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to at leastk − 1 other participants with respect to degree. We introduce a natural and
novel approach of introducing “dummy” participants into the network and linking
them to each other and to real participants in order to achieve this anonymity.

The advantage of our approach lies in the nature of the results that we derive. We
show that if participants have labels associated with them,the problem of anonymiz-
ing a subset of participants isNP-Complete. On the other hand, in the absence of
labels, we give anO(nk) algorithm to optimallyk-anonymize a subset of partic-
ipants or to near-optimallyk-anonymize all real and all dummy participants. For
degree-based-attacks, such theoretical guarantees are novel.
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1 Introduction

The advent of the social web has brought about an explosive increase in the perva-
siveness of large-scale social networks. Embedded within these networks is a wealth
of information of multidisciplinary interest for the industrious analyst. However, un-
like many other data, this information is aboutpeople; so, it is only ethical to respect
their right to privacy. As a data owner, one must respect thatsome user groups ex-
pect a level of privacy and so that privacy must be provided tothat subgroup if the
data is to be shared with external organizations, if not the entire network. The study
by Ferri et al. [19], for example, reveals that although someuser groups are less
concerned by data owners sharing data about them, up to 90% ofmembers in other
groups disagree with the principle.

If the social network is “sanitized” prior to release, the privacy of individuals
within it can be protected while satisfying the needs of analysts. We assume the
network is represented as a vertex-labelled graphG = (V,E, Σ, ℓ), with vertices
representing participants and edges representing the relationships between them.1 As
shown by Backstrom et al. [4], removing the identifiers from the graph is insuffi-
cient to guarantee privacy: an adversary can still reveal the identity of individuals
by exploiting background structural knowledge that he has about the network. Fig-
ures 1(a) and 1(b) illustrate how degree, the structural property we study, can be
sufficient to uniquely identify vertices:v is the only person with exactly3 relation-
ships, so stripping his identifier as in Figure 1(b) does not provide him any privacy
against an adversary who knows his degree.

We pursue the well-known alternative ofk-anonymizingthe social network data
prior to release. If an adversary has some knowledge of a structural propertyP of an
arbitrary individualu who he seeks to identify, one can conceal the identity ofu–and,
indeed, everyone else–by establishing that every individual in the network is identical
to at leastk− 1 others with respect toP . In this way, the knowledge of the adversary
renders at best a1/k chance of uniquely identifyingu. Stated informally, thek-
P-anonymizaton problem is thus: given a vertex-labelled graph G and a structural
propertyP , transformG into a k-P-anonymous graphG′ such thatG′ is as close
as possible toG. (Figures 1(c) and 1(d) are examples ofk-P-anonymous graphs for
P=degree.)

Certainly, there are many possible structural propertiesP of which the adversary
may have some knowledge. Many of these have been studied in literature (e.g., [29,
43,37,39]) and appropriatek-anonymization techniques have been developed and
shown to work well in experimental settings. Nonetheless, there are some pertitent,
fundamental questions for any choice ofP :2

– Is it possible to produce an optimalk-P-anonymous graph in polynomial time?

1 We define a vertex-labelled graph as the four-tuple(V,E, Σ, ℓ), whereV is a vertex set,E ⊆ V×V
is a set of undirected edges,Σ is a set of sensitive labels, andℓ : V 7→ Σ is a labelling function that
assigns a label to each vertex. We discuss in the paper two types of labels, sensitive and identifying. ByΣ,
we refer to the former, assuming the latter is stripped from the graph.

2 We mention specific cases in which these questions have been answered in our discussion of related
work in Section 6. Even in these cases, however, not all threequestions have been fully addressed.
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(a) An example unlabelled social network
graph with identifiers for each vertex

(b) The same unlabelled social network
graph with the identifiers blacked out. Ver-
ticesv andw can still be uniquely identi-
fied because of their degree.

(c) An optimal2-degree-anonymization of
the example graph by means of edge ad-
dition. No longer can verticesv andw be
uniquely identified by degree.

(d) An optimal2-degree-anonymization of
the example graph by means of vertex ad-
dition. As before, verticesv andw can-
not be uniquely identified by degree, but
the method by which this property was
achieved is different.

Fig. 1 An example of2-degree-anonymity by means both of edge- (as in literature)and vertex- (as in this
paper) addition.

– If not, can theoretical guarantees, such as bounds on approximation ratios, be
derived for non-optimal algorithms?

– Can better theoretical guarantees be determined for special classes of graphs?

For any choice of adversarial knowledge,P , these appear to be quite challenging
problems. Consider the seemingly simple adversary of studyin this work who knows
only the degree of his target. Achievingk-degree anonymityto thwart him was stud-
ied by Lui and Terzi [29], who derived an experimentally effective algorithm. Mean-
while, the works of Chester et al. [11] and of Zhou and Pei [43]offer hardness results
of k-P-anonymization for other choices ofP . Still, none of these three most closely
related works answer the questions above fork-degree-anonymization on arbitrary
graphs, implying that the problems are still quite non-trivial for this adversary.

Thus, here, we introduce a new approach tok-P-anonymization, changing both
the way one goes about constructingG′ and, correspondingly, the optimisation con-
dition. In previous work, the problem formulation has been to transformG = (V,E)
into a k-anonymous graphG′ = (V,E ∪ E′); that is to say, onlyedgesare added
to G in order to constructG′. (See Figure 1(c).) The optimisation condition, then, is
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to minimise|E′|. We embark here on the very natural study of adding newvertices
as well, transformingG = (V,E) to G′ = (V ∪ V′,E ∪ E′), and minimising|V′|.3

(See Figure 1(d).) For this optimisation problem, we require that the new edges must
have a new vertex as an endpoint (E′ ⊆ V′ × (V ∪ V′)); otherwise, the complete
graphK|V| offers an optimal solution with|V′| = 0, which is clearly not what we
want. This alternative formulation presents notable utility. Ultimately, the intent of
releasing data is to facilitate analysis, and the analysis is conducted at the aggregate
level. Introducing few new vertices with similar characteristics to those already in
the network could quite accurately preserve the aggregate characteristics of the net-
work. Some network characteristics, such as the number of large cliques, are exactly
preserved as a consequence of our constraint onE′.

Perhaps more importantly, however, is that by changing the problem formulation,
we are able to address the aforementioned three problems fora degree-based attack.
In particular, we prove hardness fork-anonymization against degree-based attacks
on arbitrary, vertex-labelled graphs using this vertex-addition model (Theorem 2).
By fixing the size of the label set to one (i.e., considering unlabelled graphs), we pro-
vide an efficient and optimal algorithm for subset anonymization (Corollary 2) and an
efficient, near-optimal algorithm for complete anonymization (Theorem 1). Further-
more, for graphs with certain properties that are likely to arise in social networks, our
optimality guarantee is improved to being within one vertexof optimal (Corollary 1).

Our Contributions

We introduce a vertex addition approach fork-P-anonymization. For whenP is de-
gree, we offer the following results:

– We introduce for unlabelled graphs anO(k ∗ |V|) k-degree-anonymization algo-
rithm based on dynamic programming and prove that, on any arbitrary graph, the
minimisation of|V′| is optimal within an additive factor ofk. For a special class
of graphs that is likely to include social networks, the algorithm is optimal within
1 for reasonable values ofk (§ 3);

– We conduct an empirical evaluation of our algorithm on several well-known net-
work datasets, demonstrating that it quite largely preserves the utility of the origi-
nal graph with respect to standard structural parametres like clustering coefficient,
average path length and connectivity, even ask approaches percentages of|V| that
are quite high for the context of graph anonymization (§ 4);

– We demonstrate that for the more general case of labelled graphs (|Σ| > 1),
k-degree-anonymization with a predetermined number of vertex additions (the
decision version of the problem) isNP-Complete, by giving a reduction from a
knownNP-Hard table anonymization problem (§ 5).

3 Precise formulations of the problem appear in Section?? for unlabelled graphs and in Section 5 for
labelled graphs.
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2 Subset Anonymity and Related Concepts

We begin by introducing the concepts under study in this paper. At a high level, subset
anonymity acknowledges that a certain subset of members in asocial network may
be highly identifiable as a group and, simultaneously, need an assurance of individ-
ual anonymity. For example, consider a social network constructed from a company
email corpus where each node of the network corresponds to anemail address and
each link between two nodes implies an exchange of emails between them. The in-
ternal email addresses are likely to have much higher degreeand be more sensitive
than the external email addresses. The objective of subset anonymity is to ensure that
members who belong to an identifiable subset of a social network, in this case the in-
ternal email addresses, cannot be distinguished from each other with certainty greater
than1/k. This way, although they are identifiable as a group, they arenot identifiable
individually.

We model a social network as an unlabeled, undirected graph,G = (V,E)4 which
contains ananonymizing subsetX ⊆ V of vertices which need to be anonymized. The
objective is to produce a similar graphG′ = (V ∪ V′,E ∪ E′) in whichX is anony-
mous. This differs from previous work, not only in the focus on subset anonymity,
but also in the permission to introduce new, “fake” vertices(V′).

An important consideration is what it means to beanonymousin a graph. Be-
cause graphs embed copious structural information, anonymity depends on what
background structural information an attacker might have.As we detail in Section 6,
various definitions have been introduced which assume an attacker has progressively
more background structural information. Since no work, however, considers the im-
plications of expanding the vertex setV, we embark on thisfoundationalstudy in
which we assume the simplest adversarial knowledge, that the attacker knows how
many connections his target has, to contrast our conclusions with those derived from
previous works which have not permitted an expansion of the vertex set (i.e., require
V′ = ∅).

To state the problem formally, we first need to introduce a fewdefinitions. We
begin by explainingk-degree-anonymity, the focus of this paper:

Definition 1 Thedegreeof a vertexv in a graphG = (V,E) is the number of neigh-
bours it has,|{u ∈ V : (u, v) ∈ E}|.

For example, the uppermost vertex in Figure 2(b) has a degreeof 5, because it
is connected to5 other vertices (neighbours). The rightmost node in the samegraph
has degree1 because it has only one incident edge. This is the information that we
assume an attacker possesses.

Definition 2 A degree sequenceof a set of verticesV is the sequence(d1, . . . , dn)
composed by sorting in descending order the degrees of everynode inV.

Again referring to Figure 2(b), the degree sequence is(5, 3, 3, 2, 1, 1, 1), the de-
grees of each of the seven vertices sorted in descending order.

4 For simplicity in this section, we regard a graph as a2-tuple. We note that equivalently, for consistency,
we could express an unlabelled graph asG = (V,E, Σ, ℓ) where∃σ ∈ Σ : ∀v ∈ V, ℓ(v) = σ. However,
the simpler notation simplifies the exposition.
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(a) (b)

Fig. 2 The two small example graphs used to illustrate our anonymization procedure

Definition 3 A k-partitioningof a degree sequence is a partitioning of the degree se-
quence into disjoint partitions such that every degree appears in exactly one partition
and every partition contains at leastk elements.

Two possible3-partitionings of the degree sequence in our running example are
((5, 3, 3) , (2, 1, 1, 1)) and((5, 3, 3, 2) , (1, 1, 1)). There are other possible3-partitionings
of this degree sequence that have non-contiguous partitions, such as((5, 3, 2, 1) , (3, 1, 1)),
but we will indicate later in Proposition 1 that these are never better choices for our
algorithm.

Definition 4 A degree sequence isk-anonymousif partitioning it into the sets of
distincts elements induces ak-partitioning.

That is to say, a degree sequence isk-anonymous if every degree appears at
leastk times in the sequence. Then, a subset of vertices can be defined ask-degree-
anonymous depending on their degree sequence:

Definition 5 A subset of verticesX ⊆ V is said to bek-degree-anonymous in a
graphG′ = (V,E) iff the degree sequence ofX is k-anonymous. Similarly, agraph
is said to bek-degree-anonymous if its entire vertex set isk-degree-anonymous.

This provides sufficient material to define the problem of study here:

Problem Definition: Given an input graphG = (V,E) and an anonymizing subset
X, construct a graphG′ = (V ∪ V′,E ∪ E′), E′ ∩ (V × V) = ∅, such thatX and
X ∪ V′ are bothk-degree-anonymous inG′ and|V′| is minimized.

Note thatX must bek-degree-anonymous inG′ because it may be readily iden-
tifiable. This corresponds to a scenario whenX is a small percentage ofV andV′

is indistinguishable fromV \ X.5 In other scenarios, say when users opt in toX as
conceived by Yuan et al. [41],X could be a large percentage ofV and not readily
identifiable so we would need thatX ∪ V′ is k-degree-anonymous to hide the “fake”
vertices amongX rather than amongV \X. Thus the need for anonymity within both
subsets.

5 Considering theEnronemail corpus on which we experiment in Section 4.1,|V| > 65000, but only
151 vertices correspond to internal email addresses.
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As a last note, we introduce a couple definitions that are useful for describing the
algorithm in the next section.

Definition 6 The max deficiency of a k-partitioning of a degree sequence is the
largest difference between highest and smallest degree within any partition.

For example, taking the two3-partitionings in our running example, themax deficiency
of ((5, 3, 3) , (2, 1, 1, 1)) is max(5 − 3, 2 − 1) = 2 and of((5, 3, 3, 2) , (1, 1, 1)) is
max(5− 2, 1− 1) = 3. Finally,

Definition 7 Thetotal deficiency of ak-partitioning of a degree sequence is the sum
over everydi in the sequence of the difference betweendi and the largest degree in
the same partition.

Using the same example we find that thetotal deficiency of ((5, 3, 3) , (2, 1, 1, 1))
is:

((5− 5) + (5 − 3) + (5− 3) + (2 − 2) + (2− 1) + (2− 1) + (2− 1)) = 7

and of((5, 3, 3, 2) , (1, 1, 1)) is:

((5 − 5) + (5− 3) + (5 − 3) + (5− 2) + (1 − 1) + (1− 1) + (1− 1)) = 7.

3 An Efficient Algorithm to Near-Optimally k-Degree-Anonymize Unlabelled
Graphs

We present here immediately our most encouraging result, that for the special case
of unlabelled graphs,k-degree-anonymization can be solved very near-optimally in
linear time. We produce ak-degree-anonymous graphG′ = (V∪V′,E∪E′) from an
original, InG′ we require that all the original vertices,V, arek-degree-anonymous-
–and in Corollary 2, we will relax this constraint to an inputsubsetX ⊆ V. We
also require that the new vertices are concealed as well so that they cannot be readily
identified and removed from the graph in order to recoverG (i.e.,V∪V′ is k-degree-
anonymous inG′). As mentioned in the introduction, we seek to minimise|V′|, while
maintaining the constraint thatE ⊆ V′ × (V ∪ V′). We will prove the following
theorem at the end of this section:

Theorem 1. Our algorithm produces ak-degree-anonymous graphG′ containing
the input graphG as an induced subgraph, usingO(nk) time andO(n) space. The
number of new vertices added is optimal up to an additive factor of k.

At a high level, the algorithm proceeds in three stages. At first, we design a precise
recursion to group the vertices ofV by target degree (the degree they will have inG′).
The recursion establishes a grouping such that themax deficiency, a parametre in
determining with how many nodesV must be augmented, is minimised. We evaluate
the recursion using dynamic programming withO(nk) execution cost.
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The second stage is to determine precisely how many verticeswith which we wish
to augmentV in order to guarantee that we cank-anonymise all ofV′. This number
is a function ofk andmax deficiency, the parametre arising out of and minimised by
the recursion evaluated in Stage 1.

Finally, we introduce a particular means of adding new edges, each of which
has at least one endpoint inV′, with the objective of satisfying all the target degrees
established during the recursion of Stage 1 andk-anonymizing the new vertices added
during Stage 2. A critical property of our specific approach is that the edges are added
in such a manner as to guarantee tractibility of the problem of k-anonymizing the new
vertices, a problem which may be hard in the general case.

As we describe the three stages of the algorithm in the following subsections, we
illustrate their execution by3-anonymizing the graphs in Figure 2.

3.1 Stage 1: Determining Each Vertex’s Target Degree

Our algorithm first proceeds by identifying which vertices should have the same de-
gree and what degree that should be. Similar to Liu and Terzi [29], we construct a re-
cursion on the degree sequence ofG to compute these groups and degrees. Contrary
to their work, however, we minimisemax deficiency rather thantotal deficiency,
because, as we prove later in Lemma 2,max deficiency tightly lower bounds the
number of new vertices that must be added in order tok-anonymize the degree se-
quence ofG. Thus, we define ak-partitioning that minimizesmax deficiency to be
optimal.

To produce an optimalk-partitioning of the degree sequence ofG, we offer an
incremental algorithm which operates from left (position1) to right (positionn) on
the degree sequence, maintaining the optimal (i.e., with minimummax deficiency)
k-partitioning of those values in the degree sequence seen sofar. The ability to do
this withO(nk) cost is a consequence of the following propositions:

Proposition 1 Themax deficiency of a partition containing a highest degree ofdi
and a smallest degree ofdj will be less or equal to themax deficiency of any parti-
tion containingdi and anydj+c or containingdj and anydi−c, ∀c ∈ N.

Proposition 2 For any partition(di, . . ., dl), itsmax deficiency is greater or equal
to that of the partitions(di, . . ., dj), (dj+1,. . .,dl), for i < j < l. That is to say, it
never produces a highermax deficiency when one splits a partition.

Both propositions follow from the facts that the degree sequences are sorted and
max deficiency (i.e., difference) is transitive. Importantly, they allowus to construct
a recursion, and an incremental, dynamic programming algorithm to evaluate that
recursion, because they imply that there are onlyk ways to produce an optimalk-
partitioning of the firstx elements if the best possiblek-partitionings are known for
the first i elements,∀i < x. From Proposition 1, it is clear that thex’th element
should be added to the right of the first(x − 1) elements. From Proposition 2, it is
clear that if there is an optimal split point for the rightmost partition that is farther
than2k − 1 positions left ofx, then it can be split into sub-partitions such that the
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rightmost partition begins at some other position at least as far right asx − 2k + 1.
The rightmost position must also have at leastk elements; so, the rightmost partition
of the optimalk-partitioning on the firstx elements must begin between positions
x− 2k + 1 andx− k, inclusive.

Our algorithm evaluates the recursion “bottom-up”, constructing an optimalk-
partitioning of the degree sequence by incrementally adding the nextx’th rightmost
degree and determining the best possiblek-partitioning. If there are fewer than2k de-
grees in the sequence, there is not any choice but to group them all together, because
at least2k elements are required to make two partitions of size≥ k. When, on the
other hand, there are at least2k degrees, then we evaluate the cost of splitting off a
rightmost partition at any of thek positions betweenx− 2k+1 andx− k, inclusive,
and choose the rightmost of the cheapest among them. We invoke the recursion by
recognising that themax deficiency incurred by creating a rightmost partition that
starts at some positioni is exactly the larger of the best possiblek-partitioning up to
i− 1 and the degree differences between thei’th andx’th degrees in the sequence.

The following recursion evaluates the cost of splitting andthus constructs an opti-
malk-partitioning. In the statement of the recursion below, the∆ function computes
themax deficiency of a particular partition; theStart function keeps track of where
x’s partition starts, shouldx be the rightmost degree in it; and theCost function com-
putes the overall cost (max deficiency) of the best possible partitioning up to thex′th
element. TheStart function allows us to retrace the best possiblek-partitioning up to
anyx’th position: the rightmost partition is given by[Start(x), x]; the next rightmost
position is given by[Start(Start(x) − 1), Start(x) − 1]; &c. Finally, note that we
assumeargmin returns the maximal point at which a function is minimised.

Let

Cost Split = mini∈[max(k,x−2k+1),x−k](max(Cost(1, i− 1), ∆(i, x))),

Pos Split = argmini∈[max(k,x−2k+1),x−k](max(Cost(1, i− 1), ∆(i, x))).

Then,

∆(x, y) = dx − dy ,

Cost(1, x) = ∆(1, x), if x < 2k,

Cost(1, x) = Cost Split, if x ≥ 2k,

Start(x) = 1, if x < 2k,

Start(x) = Pos Split, if x ≥ 2k.

For the graph of Figure 2(b), the degree sequence is(5, 3, 3, 2, 1, 1, 1). The opti-
malk-partitioning of this degree sequence is((5, 3, 3), (2, 1, 1, 1)), which we arrive
at by evaluating the recursion, as tabulated in Table 1.

Two parametres important for the next stages of our algorithm arise out of the
k-partitioning of the degree sequence, namelymax deficiency andtotal deficiency.
As we show later in Lemma 2, themax deficiency is a lower bound on|V′| in an
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Pos 1 2 3 4 5 6 7
Deg Seq 5 3 3 2 1 1 1
Cost(1, x) 0 2 2 3 4 2 2
Start(x) 1 1 1 1 1 4 4

Table 1 The values of the recursion for the3-degree-anonymization of the example graph from Figure 2(b)

optimal solution. We necessarily must bound the value oftotal deficiency, because
this allows us to upper bound the number of edges added by–andthus execution cost
of–our entire algorithm.

Lemma 1 Thetotal deficiency of an optimalk-partitioning of a sorted degree se-
quence is upper-bounded by(n− 1)(2k − 1).

Proof First, note that from Proposition 2 that any optimal partitioning with a partition
sized2k or greater can be split into two partitions such that themax deficiency is
not increased. Furthermore, doing so will decrease thetotal deficiency unless the
contribution of the partition is already zero. So, no optimal partition should contain
2k or more elements.

If [front(di), end(di)] denotes the partition containingdi, [front(pj), end(pj)]
denotes the partitionpj, and|P| denotes the number of partitions, then the total defi-
ciency of an optimalk-partitioning is given by:

∑

di

front(di)− di

≤
∑

di

front(di)− end(di)

≤ (2k − 1)
∑

pj

front(pj)− end(pj)

≤ (2k − 1)
(

front(p1)− end(p|P|)
)

≤ (2k − 1)(n− 1),

where the second inequality follows because the deficiency contributed by a partic-
ular degree is certainly no more than themax deficiency contributed by its entire
partition, the third inequality follows becausefront(pj+1) ≤ end(pj), and the fourth
inequality follows because the maximum degree in a simple graph isn− 1.

3.2 Stage 2: Determiningm, the Number of New Nodes

The next step in anonymizing a graph is to determine precisely how many vertices
should be added. Ideally, we would add exactlymax deficiency vertices, because this
is a lower bound on how manymustbe added, as shown in Lemma 2:

Lemma 2 Tok-degree-anonymize a set of verticesX ⊆ V by means of vertex addi-
tion, one must add at least as many new vertices as themax deficiency of an optimal
k-partitioning of the degree sequence ofX .
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Proof First note that any graphG′ in whichX is k-degree-anonymous corresponds
to somek-partitioning of the original degree sequence ofX . In order to satisfy every
target degree arising from thek-partitioning, some vertex will require as many new
edges as themax deficiency of thatk-partitioning. Also, because edges can only be
added from eachv ∈ X to new vertices and because we investigate only simple
graphs (i.e., those which do not contain multiple edges between the same source
and destination nodes), clearly these new edges must connect tomax deficiency new
vertices in order to satisfy that particular vertex’s requirement.

From among allk-partitionings of the degree sequence ofX , corresponding to
all graphsG′ in which X is k-degree-anonymous, the optimal choice minimises
max deficiency, so also minimises how many new vertices are required inG′.

However, for security, we anonymize the new vertices as well(ensure thatV∪V′

isk-degree-anonymous inG′), and this may require adding more thanmax deficiency
nodes. Our approach to adding edges we describe in more detail in the next subsec-
tion, but there are a couple important things to note here because they influence this
stage. For readability, letmd = max deficiency and lettd = total deficiency. Then,
once every target degree is achieved through edge additionsin Stage 3,td(mod md)
of the new vertices will have some degree, call itd, and the othermd− td(mod md)
will have a degree ofd − 1. If these both appear in the target degrees of thek-
partitioning, the entire graphG′ is k-anonymous. Figure 3 illustrates an example of
this, where the graph on the left is anonymized by adding one additional vertex which
coincidentally then has a degreed = 1 that is already present on three other vertices.
On the other hand, ifd or d−1 does not appear in the target degrees, the new vertices
need be explicitly anonymized as well. To accomplish this, we create ak-anonymous
group of the new vertices by introducing intra-new-vertex edges to establish that they
all have the same degree. This requires that: 1) there arek new vertices with which
to form ak-anonymous group; and 2) there are an odd number of new vertices (we
explain why in the next subsection).

(a) The example graph from Figure 2(a) (b) A 3-degree-anonymization of (a) in
which the new vertex ends up with the
same degree as three vertices from the
original graph, so does not need to be ex-
plicitly anonymized

Fig. 3 An example for which the additional vertex has the same degree as a3-degree-anonymous group
of original vertices
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Both these conditions are satisfied when we add exactly

m = (1 +max(md, k))(mod 2) + max(md, k)

new vertices to the graph to create a new vertex setV′ of sizen+m.

3.3 Stage 3: The Edge Insertion

The final stage of our anonymization algorithm is to add new edges to the graph
(restricting the addition to those with an endpoint inV′ \ V, as per the problem
definition), in order to meet the target degrees establishedin Stage 1. This must be
done carefully because not any arbitrary approach is guaranteed to succeed: the task
of anonymizing a subgraph ofm new vertices added in Stage 2 is not generally trivial.
Hence the motivation behind ourcycling approach: it is designed such that it will
always produces a scenario in which the anonymization of thenew vertices is of
linear cost.

First, we order them additional vertices (arbitrarily). Letdef(vi) be the discrep-
ancy between thei′th degree in the degree sequence and the largest degree within the
same partition (thedeficiencyof the i’th vertex). We then connect the firstdef(v1)
of them additional vertices to the vertex corresponding tov1, the nextdef(v2) ad-
ditional vertices to the vertex corresponding tov2, and so on until allm additional
vertices have an edge. This process ends at somevj .

We continue with another iteration, this time starting atvj and with subsequent
iterations until we have satisfied the deficiency of every node in the original graph.
This is illustrated for the example graph of Figure 2(b) in the first five steps of Fig-
ure 4, reading left to right, then top to bottom. Seven edges must be added and they
are done so cyclically from left to right.

Fig. 4 3-Anonymizing the example graph from Figure 2(b) with threeadditional vertices

Because of the nature of thiscycling procedure, always adding an edge to an
additional vertex that has not yet been visited on that particular iteration, we can
guarantee that the degrees of the additional vertices are all within one. In fact, if
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exactlyd iterations are required in order to anonymize the original graph, then (as we
hinted in Stage 2)td(mod m) of them additional vertices will have degreed and the
remainingm−td(mod m) will have degreed−1. Because we serviced each original
vertex in turn, we can be certain to not accidentally introduce the same edge twice. So,
we have successfullyk-anonymized every vertex that was in the original graph. Quite
importantly, we have done so in a manner that guarantees thatthe remaining edge-
addition-based problem is efficient and successful becausethere is an odd number of
vertices and the degrees are all within one.

The last detail is to ensure that all the new vertices are themselvesk-anonymous.
As a first recourse, ifd andd−1 are both present as target degrees from the recursion
in Stage 1, then the additional vertices will already belongto somek-anonymous
group. Figure 3 demonstrates that 3-anonymizing the example graph of Figure 2(a)
is such a case, where the additional vertex fits nicely into the 3-anonymous group of
degree 1 vertices.

In the event that eitherd ord−1 is not present in the anonymized degree sequence,
we explicitly anonymize the new vertices. For them − td(mod m) vertices with
degreed − 1, we randomly pair them and add an edge between each pair. Ifm −
td(mod m) is even andm ≥ k, we know this is sufficient to guarantee all new
vertices have the same degree (namelyd) as at leastk − 1 other vertices.

If, instead,m− td(mod m) is odd, then this pairing will leave out one last vertex,
call it r. Because of our diligence in selectingm, we know thatm − 1 is even (and
at leastk), so we can add an edge fromr to each of two other additional vertices so
that all three have degreed + 1. The remainingm − 3 vertices with degreed can
then all be paired off again (sincem − 3 is even) and all additional vertices will be
anonymized with degreed + 1. Some care must be taken to not accidentally re-add
an edge between additional nodes, but this is really quite trivial because of how we
proceeded with the preceding edge addition. Figure 5 illustrates this scenario. The
degrees (4 and 3) of the two additional nodes are irreconcilable andmd − 1 is odd,
so we instead our algorithm added the extra vertex as in Figure 4.

Fig. 5 An example in which our algorithm will not optimally 3-degree-anonymise Figure 2(b) with only
two additional vertices because of the difficulty resolvingthe anonymity of the new vertices

3.4 Algorithmic Analysis

From the algorithm described in this section, we prove the following theorem:
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Theorem 1 Our algorithm produces ak-degree-anonymous graphG′ containing the
input graphG as an induced subgraph, usingO(nk) time andO(n) space. The num-
ber of new vertices added is optimal up to an additive factor of k.

Proof First, we note that the degree sequence partitioning requiresO(n) space and
O(nk) time. If this recursion is evaluated bottom-up (i.e., fromx = 1 to x = n) and
the results are memoised after each iteration, then the running time is linear innk
because the degree sequence has lengthn and for each element of the degree sequence
there is an iteration that will cost at most a comparison to2k, lookups ofCost, and
computations of∆ for eachi ∈ [k, 2k). The memory cost of the memoization is3n
units of memory: an array of sizen each for storing the results of theCost andStart
calculations and an additional array of lengthn in which the original degree sequence
is kept.

Second, the number of edges added is bounded bytd + m, sincetd edges are
added between original and additional vertices; the subsequent anonymization of ad-
ditional vertices never changes an additional vertex’s degree by more than(d+ 1)−
(d−1) = 2; and at least one additional vertex already has a degree ofd. We introduce
at mostm additional vertices, at most eithermd+1 or k+1. k-Degree-anonymizing
V implies, from Lemma 2, a lower bound on the optimal number of additional ver-
tices ismd ≥ 1, noting also that any graph with amd of 0 is alreadyn-anonymous.
So, we add at mostmd + 1 −md = 1 more vertex than optimal or we add at most
k + 1− 1 = k more vertices than optimal.

Sincem is bounded byn (because neithermd nork can be larger thann) and the
td is bounded by(n− 1)(2k − 1), the addition of these edges requiresO(nk) time.
Since this requires constant memory, the overall space usage isO(n).

Note that we assume in this proof that the sorted degree sequence can be pro-
vided based on the representation of the graph. If this is notthe case, anO(n logn)
preprocessing step to compute the sorted degree sequence subsumes our algorithm.

Corollary 1 For input graphs in which∃i : (di−1−di) ≥ k and(di−di+k−1) ≥ k,
our algorithm is optimal up to an additive factor of1.

Proof If ∃i : (di−1 − di) ≥ k and(di − di+k−1) ≥ k, then themax deficiency of
the degree sequence is necessarily at leastk becausedi must be grouped either with
di−1 or di+k−1 by Proposition 1. Consequently, the scenario in which the algorithm
adds some number of vertices other thanmax deficiency ormax deficiency+1 does
not arise.

This corollary is particularly interesting with respect tosocial network graphs,
the degrees of which tend to follow a power law distribution [7].

3.5 On the Security ofG′

Perhaps an attacker’s best chance at deconstructing our anonymization comes from
cycling through all possible choices of the new equivalenceclasses (k-anonymous
groups), removes them from the graph and then runs our algorithm to check if the
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output matches the original anonymized graph. We note here,that the last step where
the adversary has to check if the output graph is the ”same” asthe initial anonymized
graph requires an algorithm for checking graph isomorphism. No efficient (polyno-
mial time) algorithm is known for this problem. In addition,there are examples in
which an equivalence class of additional vertices is mergedwith an equivalence class
of original vertices because they have the same degree at theend of the anonymiza-
tion procedure. For such graphs, this attack will not be ableto extract the additional
vertices only.

4 Experimental Evaluation of the Utility of G′

Our algorithm, and indeed a vertex-addition approach in general, offers many ad-
vantages in terms of theoretical guarantees. In Section 3.4, for example, we proved
asymptotic performance and near-optimality.

If we consider again the motivation for anonymizing the network in the first place,
it is because ultimately we want to release it for analysis. In the case of an unla-
belled graph, this is necessarily structural analysis. So,preserving the utility of the
released data by not especially disrupting the structural characteristics of the graph
is important. Thus more theoretical guarantees that our vertex-addition model offers:
the number of cliques of size> 3 is exactly maintained betweenG andG′. More
broadly, for any monotone property of a graph, our approach can only possibly add
false positives, never generating false negatives.

However, there are interesting non-monotone properties, too. In particular, for
clustering coefficient, average path length, and thehop plotof a graph, the effect of
any anonymization procedure is more difficult to predict andinput-dependent, but the
properties are focal points of other anonymization and social network analysis papers.
In this section we present an experimental study in two partsof to what extent the
application of our algorithm in the previous section disrupts the utility of the network
with respect to these less predictable properties.

First, we investigate the scalability of the algorithm withrespect to how well
graph characteristics are preserved with increasingly demanding test scenarios (Sec-
tion 4.1). Then, in Section 4.2 we investigate how well graphcharacteristics are pre-
served in the context of alternative approaches.

4.1 Scalability Tests

4.1.1 Metrics and Setup

Before describing the results of our experimental evaluation, we first detail our ex-
perimental setup. In particular, we describe the choice of datasets and metrics, and
the implementation and machine details.

DatasetsFour datasets from diverse domains form the subjects of our empirical
study. We use one large dataset that represents an email communication network in



16 Chester, Kapron, Ramesh, Srivastava, Thomo & Venkatesh

a company (namely, Enron) [26]. Additionally, we select three other datasets that we
expect to exhibit near worst-case behaviour. TheNet Sciencegraph [34] has a large
discrepancy in degrees and thus incurs substantialmax deficiency andtotal deficiency
during the anonymization process. ThePrefuse[23] and Football [20] graphs are
small, so the effect of adding nodes and/or edges has a largerpercentage effect on
the properties of the graphs. The properties of these datasets are shown in Table 2.
Note that Net Science, in particular, has been remarked to bea strong test set for
network analysis by Leskovec et al. [27]. The Enron dataset was obtained from the
Stanford SNAP repository,6 and the Net Science and Football datasets were obtained
from Mark Newman’s repository.7

Graph Nodes Edges APL CC
Enron 36692 183831 3.39 0.09
Net Science 1589 2742 5.76 0.69
Prefuse 129 159 3.16 0.07
Football 115 613 2.51 0.61

Table 2 Structural Properties of Datasets for our Empirical Study

Metrics We measure the distortion introduced by the algorithm via some metrics
which are commonly studied properties in the social networkliterature according to
the survey by Chakrabarti et al. [7]. The three metrics we study are defined below.

1. Clustering Coefficient (CC) [5]: Informally, clusteringcoefficient measures the
percentage of paths of length2 which are also triangles. This metric in some sense
measurestriadic closureof graphs–social networks are known to have significant
triadic closure (friends of a person are also likely to know each other). More
formally, for all ordered triplesu, v, w ∈ V ,

CC =
||{u, v, w ∈ V : (u, v) ∈ E ∧ (u,w) ∈ E ∧ (v, w) ∈ E}||

||{(u, v, w ∈ V : (u, v) ∈ E ∧ (u,w) ∈ E}||

2. Average Path Length (APL): This metric is a measure of the expected path length
in the graph between any two randomly chosen connected vertices. This metric
is highly relevant as it is directly related to thesix degrees of separationthat is
known to exist between randomly chosen people in social networks, since the
study of Milgram [33]. Define a predicateC(u, v) to betrue if u andv are con-
nected in the graph andfalse if they are not connected. DefineCP = {(u, v) :
C(u, v) = true} to be the set of all the pairs of vertices that are connected. We
define the average path length to be:

APL =

∑

(u,v)∈CP PathLength(u, v)

| CP |
.

We assume thatPathLength(u, u) = 0 for all u ∈ V .

6 http://snap.stanford.edu/data/
7 http://www-personal.umich.edu/ ˜ mejn/netdata/

http://snap.stanford.edu/data/
http://www-personal.umich.edu/~mejn/netdata/
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3. Hop Plot [18]: The connectivity of a graph can be graphically modeled using the
hop plot. The hop plot studies reachability for each path lengthk. For a given
value ofk, the hop plot displays, summed over all the vertices, the number of
nodes reachable from that vertex using paths of length at most k. The maximum
value for any value ofk is n2 wheren is the number of vertices in the graph. The
smallest value ofk for which the maximum value ofn2 is reached is thediameter
of the social network, the path length using which any two nodes in the graph can
reach each other. Changing or distorting the connectivity of a graph drastically
would change the shape of their hop plots. This is the main motivation behind
studying these plots.

Experimental SetupA java implementation of the algorithm was used to measure
the distortion based on the metrics for the five chosen datasets defined earlier in this
section. The resulting graphs were manually verified to bek-anonymous. All exper-
iments were performed on a quad-core Intel Xeon5140 2.33GHz processor with
4MB of L2 cache and6GB of RAM.

Experimental studies in literature typically study small values ofk (close to3
and rarely even100). We varyk as a fraction ofn for our experiments, while still
maintaining thatk ≪ d. For large and midsize datasets, we varyk from k = 0.25
up to2% of the number of nodes in the graph. For the two small datasets(with over
100 nodes), this is too refined, so we varyk from k = 1 up to5% of the number of
nodes in the original graphs. For the large and midsize datasets,2% of the number of
nodes would still translate tok values of80 to 720 which is a substantial number for
the context.

4.1.2 Results and Discussion
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Fig. 6 Distortion of CC of Enron dataset as a
function ofk
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Fig. 7 Distortion of CC of Football dataset as a
function ofk

We first discuss the results of the experimentation on clustering coefficient. No-
tice first the plots for the Enron (Figure 6) and Football (Figure 7) datasets, which
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are examples of very good performance. The horizontal axis represents the value of
k as a function of the number of nodes in the dataset. The vertical axis represents the
clustering coefficient. Zero distortion would correspond to the solid line, which rep-
resents the characteristics of the anonymized data, exactly overlaying the dotted line,
which represents the value in the original dataset. The performance of our algorithm
on the Football dataset and for larger values ofk on the Enron dataset is excellent
because it very nearly achieves this perfect overlay.
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Fig. 8 Distortion of CC of Net Science dataset
as a function ofk
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Fig. 9 Distortion of CC of Prefuse dataset as a
function ofk

Our performance with respect to clustering coefficient on the other two datasets,
Net Science and Prefuse, is depicted in Figure 8 and Figure 9,respectively. That
the opposite effect was observed on each dataset ask increased demonstrates the
unpredictability of the effect of anonymization on clustering coefficient. In this case,
the results match intuition, because of the properties of the dataset. In particular,
Net Science has a high clustering coefficient originally; onthe other hand, Prefuse
features a couple nodes with especially high degree relative to the other nodes, so
each newly added vertex is connected to a large percentage oforiginal nodes. This is
necessary in order to balance out the very hightd : md ratio at higher values ofk.

Next, we discuss the results of the measurements on average path length. The
plots that we have created are to be interpreted in the same manner as those just seen
for clustering coefficient. That is to say, perfect performance occurs when the solid
line, representing the anonymized graphs, overlays the dotted line, representing the
value in the original graph. We again start by showing our performance on the Enron
(Figure 10) and the Football (Figure 11) datasets, to demonstrate especially good
results.

It is worth noting again the unpredictability of these metrics. The average path
length on the Football dataset, unlike any of the others, rises in the anonymized
graph. We note that the only especially large difference between the original graph
and anonymized graph occurs on the Net Science dataset (Figure 12), which has a
relatively high original average path length compared to the other datasets. Although
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Fig. 10 Distortion of APL of Enron dataset as
a function ofk
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Fig. 11 Distortion of APL of Football dataset
as a function ofk

there is a noteable change on the Prefuse dataset (Figure 13)for k = 2%, it decreases
at a very slow rate for all subsequent valuesk > 2%.
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Fig. 12 Distortion of APL of Net Science
dataset as a function ofk
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Fig. 13 Distortion of APL of Prefuse dataset as
a function ofk

The final set of experiments that we ran on the structural distortion of our algo-
rithm for non-monotone properties was in measuring the hop plot of the graphs. The
structure of these plots is different, but the interpretation is similar. For each value
of k, a separate line is depicted. Additionally, one line depicts the hop plot for the
original graph. Because the number of vertices changes, thelines cannot possibly
overlay each other. Instead, good results are indicated by the similarity of theshape
of the curves. The results on the Enron (Figure 14), Football(Figure 15), and Prefuse
(Figure 17) datasets demonstrate especially good performance, because the shape of
the curve is consistent despite its increasing max value.

Notice that the hop plot lines for the Football dataset nearly dooverlay each other:
this is because the number of additional nodesm required to anonymize the dataset
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Fig. 14 Distortion to the hop plot of Enron
dataset for several values ofk
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Fig. 15 Distortion to the hop plot of Football
dataset for several values ofk

is quite small. The Net Science dataset (Figure 16) has a hop plot that varies more
substantially after anonymization. Again, however, most of this change occurs at a
low value ofk; for subsequent, higher values, not much more change is witnessed.

0 1 2 3 4 5 6 7 8 9
10

3

10
4

10
5

10
6

Hop Size

R
ea

ch
ab

le
 N

od
es

 

 

k=25
k=20
k=15
k=10
k=5
Original

Fig. 16 Distortion to the hop plot of Net Sci-
ence dataset for several values ofk
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Fig. 17 Distortion to the hop plot of Prefuse
dataset for several values ofk

A last comment from our scalability evaluation is with respect to execution time.
Indeed, we proved good asymptotic performance, but, nonetheless, absolute running
time is always a curious measure. For the largest dataset (Enron), the running time for
the actual anonymization took a little over one minute (70 seconds) for all the values
of k in the plots, reflecting the proven efficiency of the algorithm. The running time
reported is the average of5 independent runs of the algorithm for each value ofk.
The evaluation time was dominated by the naive computation of the metrics on the
original and distorted graphs. These took about20 to 30 minutes each. The times on
smaller graphs were much lower and had the same trend where the computation of
the metrics dominated the running time.
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4.2 Comparability Tests

Although there are . Compare to the state-of-the-art edge-basedk-degree-anonymization
algorithm [29]. Evaluate whether the vertex-based approach that we introduce is em-
pirically competitive in terms of what is known about the edge-based approach.

4.2.1 Methodology

An experiment was run earlier by Ying et al. [40] to compare thek-degree-anonymization
of Lui and Terzi [29] to an approach that randomly adds and removes edges to pro-
vide anonymity through obscurity. Our methodology for comparing to the algorithm
of Lui and Terzi is to run a series of experiments identical those of Ying et al. and
compare the performance of our algorithm to these publishedvalues. Thus, as before,
we anonymize the entire vertex set,V.

DatasetsWe conduct the experiments on the samepolblogsdataset [1] used by
Ying et al., which we obtained from the Carnegie Mellon CASOSrepository8. The
dataset consists of1222 vertices, each corresponding to a political blogbi, and16714
edges(bi, bj) indicating that a hyperlink existed frombi to bj and/or frombj to bi. In
other words, the dataset is an undirected citation network.

Metrics Ying et al. evaluate four metrics that were presented in the comprehensive
review of network characteristics by Costa et al. [13]. We evaluate three of these; the
modularity measure,Q, on the other hand, does not apply in our case because we
assume vertices are all of the same type (i.e., unlabeled), and it evaluates the extent
to which the network is modularized by vertex type.

1. Transitivity Measure (C) [5]: The transitivity measure used by Ying et al. is ex-
actly theclustering coefficientthat we introduced in Section 4.1. We will continue
to refer to this as the clustering coefficient of the graph.

2. Harmonic Mean of the shortest path (h) [25]: Theharmonic meanis an evaluation
of connectivity, similar to theaverage path lengththat we used in Section 4.1. Let
dij be the distance of the shortest path from vertexi to vertexj, or∞ if they not
connected. Then,

1

h
=

1

|V|(|V| − 1)

∑

i6=j

1

dij
.

3. Subgraph Centrality (SC) [17]: Thesubgraph centralityis an evaluation of how
many (not necessarily simple) cyles emanate, on average, from each vertex, where
each cycle is weighted by the reciprocal of the factorial of its length. LetW l

i be
the number of walks9 of length l that start and end at vertexi. The subgraph

8 http://www.casos.cs.cmu.edu/computational_tools/dat asets/external/polblogs/index11.php
9 Recall that a walk is any sequence of adjacent edges, including those which revisit edges and/or

vertices.

http://www.casos.cs.cmu.edu/computational_tools/datasets/external/polblogs/index11.php
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centrality is the following convergent infinite summation,which converged to the
precision we report in these experiments at a length ofl ≈ 120:

SC =
1

|V |

|V |
∑

i=1

∞
∑

l=2

W l
i

l!
.

Experimental SetupThe experiments are conducted identically to those in our scal-
ability tests (Section 4.1), except that we instead varyk through integersk ∈ [2, 10],
for precise compatibility with the study by Ying et al.We report all values to the same
precision as offered by Ying et al.

4.2.2 Results

The results for the comparability study are disclosed in Table 3 below. Each row
of the table corresponds to an experiment with a different anonymity threshold. Each
column indicates the measured value for the corresponding graph characteristic. Each
characteristic is reported twice, once corresponding to anedge-addition algorithm
and indicated by the suffix-E and once corresponding to our node-addition algorithm
and indicated by the suffix-V. Perfect performance in a row would be indicated by
achieving exactly the same characteristics as in the original graph (thek = 1 row);
deviation in either direction is undesirable.

SC-V SC-E
CC-V CC-E* h-V h-E* (×1029) (×1029)

k=1 0.226 0.226 2.51 2.51 1.21 1.21

k=2 0.219 0.225 2.51 2.50 1.30 2.73
k=3 0.215 0.223 2.49 2.48 1.41 1.87
k=4 0.207 0.224 2.48 2.49 2.16 3.61
k=5 0.205 0.221 2.48 2.48 2.88 3.40
k=6 0.200 0.222 2.46 2.47 2.66 1.45
k=7 0.226 0.220 2.46 2.46 5.55 6.94
k=8 0.190 0.219 2.45 2.46 5.37 6.25
k=9 0.185 0.221 2.44 2.49 11.0 4.46
k=10 0.183 0.221 2.43 2.46 8.25 4.04

*Values for edge-addition (E) taken from [40].

Table 3 Values ofclustering coefficient(CC), harmonic mean(h), andsubgraph centrality(SC), respec-
tively, for thepolblogsdataset after applyingk-degree-anonymization by means of vertex addition (V), as
in this paper or strictly edge addition (E), as in [29]. The row k = 1 represents the original characteristics
of the graph (i.e., only a guarantee of1-anonymity). Note that the scale is changed for the two columns
reportingsubgraph centrality.

4.2.3 Discussion

The results of the comparability experiments are very encouraging. Our algorithm
does not rely on any randomization, yet still performs very near to the edge-addition
algorithm on the first two attributes. Forclustering coefficientour algorithm is within
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0.018 of the edge-additions values, on average, with a standard deviation across
points of0.015. This is very close, considering the precision of the experiments is
reported only to within0.001. For harmonic mean, these numbers are even closer:
µ = 0.01 andσ = 0.02 with an experimental precision of0.01.

These values are closer even than they seem because of the randomization that is
involved in the edge-addition algorithm. Whereas our algorithm will always produce
the same values for these characteristics, any values reported for the algorithm of Lui
and Terzi are subject to randomness and could be either higher or lower on any subse-
quent run of the experiments. This suggests that either approach tok-anonymization
can produce anonymous graphs that have similar structural characteristics.

Results for the final metric under consideration,subgraph centrality, are some-
what inconclusive. Our algorithm outperforms the edge-addition on all but one case
prior to k = 9. This is reasonable to expect, because adding edges to existent nodes
is more likely to create new, short loops than is adding edgesto “fake” nodes and the
addition of new nodes by our algorithm increases the denominator to help stunt the
growth of the numerator. For the highest values ofk, 9 and10, the edge-addition has
an unintuitive40% leap in performance in contrast to our predictable degradation.
Consequently, it is difficult to extrapolate what might occur with this metric in new
experiments.

5 A Hardness Result for Subset Anonymization on Labelled Graphs

Until this point, we have been considering the special case of unlabelled graphs.
For example, we stripped the political lean labels from thepolblogsdataset dur-
ing our experiments. In this section, we increase|Σ| and study the tractability of
k-anonymization against degree-based attacks. With|Σ| > 1, the nature of a degree-
based attack changes, because the adversary may know the number of outbound edges
from a targetv to vertices of each label. So, a stronger anonymity notion isrequired.
(See Figure 18.) Also, we recognize that often it is not the case thateveryvertex need
be anonymous (for example, see the work of Yuan et al. [41]), so considersubset
anonymization. We begin by formally defining the problem for the labelled setting.
Note that for|Σ| = 1, this reduces to the problem introduced in§3.

The analogue in the labelled setting of a degree sequence is alabel sequence:

Definition 8 (Label sequence)For v ∈ V, we say thatSv = (l1, l2, . . . , lm) is a
label sequence forv if it corresponds to some ordering of the labels ofv and the
vertices that are adjacent tov. We will consider label sequences of vertices to be
equivalent up to reordering.

The four label sequences in the example of Figure 18(a), anticlockwise from the
bottom left, are((v, v), (v, v, u), (v, u, u), (u, u)). Then,k-anonymity for labelled
graphs relates to the uniqueness of label sequences:

Definition 9 Given a vertex-labelled graphG = (V,E, Σ, ℓ), a subsetX ⊆ V of
vertices isk-sequence-anonymous inG if for every vertexv ∈ X , there are at least
k − 1 other vertices inX whose label sequence is the same as the label sequence of
v.
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(a) A example 2-degree-anonymous
vertex-labelled graph that can still be
attacked by label sequence

(b) The example vertex-labelled graph
made to be2-sequence-anonymous by
means ofedgeaddition

(c) The example vertex-labelled graph
made to be2-sequence-anonymous by
means ofvertexaddition

Fig. 18 An example of2-sequence-anonymity. Notice that2-degree-anonymity (Figure 18(a)) is insuffi-
cient to guarantee anonymity in a vertex-labelled setting.

We denote byu ≡ v that verticesu andv have the same label sequence. Clearly,≡
is an equivalence relation and hence induces a partitionX/ ≡ of X into equivalence
classes. IfX is k-anonymous inG, every equivalence class is of size at leastk. Then,
the problem ofk-sequence anonymization is defined as:

k-LABELLED SUBGRAPH ANONYMIZATION
Input: A vertex-labelled graphG = (V,E, Σ, ℓ), a setX ⊆ V of vertices, and an
integert.
Question: Is there a vertex-labelled graphG′ = (V∪V′,E∪E′, Σ ∪Σ′, ℓ∪ ℓ′) such
that|V′| ≤ t, E′ ⊆ (V×V′)∪ (V′ ×V′), Σ′

|V = Σ, ℓ′|V = ℓ andX is k-anonymous
in G′?

That is, can wek-sequence-anonymizeX by adding at mostt new labelled ver-
tices? New edges must have at least one endpoint inV′.

Theorem 2 k-Labelled Subgraph Anonymization isNP-Complete fork ≥ 3.

Proof To show that this problem isNP-Hard, we build a reduction from the following
anonymization problem on tables that was shown to beNP-Hard by Meyerson and
Williams [32]:

k-ATTRIBUTE-ANONYMITY
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Input: A tableT with n rows andl columns (also called attributes) with entries over
{0, 1} and integerst andk ≥ 3.
Question:Can the rows ofT bek-anonymized by suppressing at mostt attributes of
T? An attribute is said to be suppressed if all its entries (0 and 1) are replaced by *.

Reduction: Our reduction is described as follows:
Given a TableT, let T(m,j) ∈ {0, 1} denote the value of attributej in row m.

Then, the vertex-labelled graphGT corresponding toT is constructed as follows:

– VT = {r1, r2, . . . , rn} ∪ {cij|1 ≤ j ≤ l, i ∈ {0, 1}}.
– LetET = {(rm, cij)|T(m,j) = i} where1 ≤ m ≤ n, 1 ≤ j ≤ l andi ∈ {0, 1}.
– Σ = {R} ∪ {Ai

j|1 ≤ j ≤ l, i ∈ {0, 1}}.
– ℓ(ri) = R andℓ(cij) = Ai

j .
– Finally, remove all isolated vertices fromGT.

Entry A1 A2 A3

1 0 0 1
2 0 1 1
3 0 0 1
4 1 0 1
5 1 0 0
6 1 0 1

Fig. 19 An example tableT and its tranformation into a graphGT

In other words, we encode a binary table as a graph in which a row vertexrm with
labelR is connected to a column vertexc0j (c1j) with labelA0

j (A1
j) if the (m, j)th

entry is 0 (1).
Let X = {r1, . . . , rn} denote the set of row vertices ofGT. We will show that

T can bek-anonymized by suppressing at mostt attributes if and only if we can
k-anonymizeX by adding at most2t new labelled vertices.

Let G′
T be any graph obtained fromGT such thatX is k-anonymous inG′

T. We
will now show that we may assume without loss of generality,G′

T satisfies a set of
properties. If it does not, we convert it into one that satisfies the properties without
increasing the number of new labelled vertices added inG′

T.
Our first lemma shows that the anonymization procedure does not introduce ver-

tices with new labels not inΣT. Furthermore, none of the new vertices added toGT

will be labelled byR.

Lemma 3 Σ′
T = ΣT andℓ′T(v) 6= R for anyv ∈ V′

T.

Proof Suppose there is at least one vertex with a new labell, l 6∈ ΣT in G′
T. Let

Y be any equivalence class ofX/ ≡. Every vertexy ∈ Y has the same number
of labelsl in its label sequence inG′

T. Therefore, the label sequences of all vertices
in Y will remain the same after all the new vertices with labell are removed from
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G′
T. Since this is true of any equivalence classY , we can assume thatΣ′

T = ΣT.
To show thatℓ′T(v) 6= R for anyv ∈ V′

T, note that the labelR does not appear in
the label sequence of any vertex ofY in GT. In addition,R must appear the same
number of times in the label sequence of any vertex ofY in G′

T. Therefore, by the
same reasoning as above, all new nodes with the labelR in G′

T can be removed and
Y will remaink-anonymous.

Lemma 4 For everyi, i ∈ {0, 1}, and everyj, j ∈ {1, 2, . . . , l}, the labelAi
j ap-

pears at most once in the label sequence of a vertex fromX in the graphG′
T.

Proof Let Y be any equivalence class ofX . All vertices inY have the same label
sequence inG′

T. If a labelAi
j appears in the label sequence of a vertexy of Y in GT,

we can assume that no edge betweeny and a new vertex labelledAi
j is added inG′

T.
If not, this label will appear more than once in the label sequence ofy and hence in
the label sequence of every other vertex ofY . Also, the number of occurrences of this
label in every label sequence will the same. Since at most oneof these will be due to
an edge ofGT, for each vertexv in Y , we can remove all but one edge inET ∪ E′

T

betweenv and a node labelledAi
j in G′

T and still preserve anonymity of vertices in
Y .

Lemma 5 For everyi, i ∈ {0, 1}, and everyj, j ∈ {1, 2, . . . , l}, at most one new
vertex with the labelAi

j is added in the graphG′
T.

Proof Suppose not. We merge all the new nodes with the labelAi
j into a single node.

This only reduces the number of new vertices added with labelAi
j . In Lemma 4, we

have shown that every labelAi
j appears at most once in the label sequence of every

vertex inX . Therefore, the merge operation will not create multiple edges and all
the label sequences of the vertices ofX will remain the same as before after this
modification.

Lemma 6 All new vertices appear in pairs. That is, ifA0
j ∈ ℓ(V′

T), thenA1
j ∈ ℓ(V′

T)
and vice versa.

Proof Suppose a new vertex with the labelA0
j is added. Let us consider all the ver-

tices inX to which this vertex is adjacent inG′
T. Then one of those verticesv must

be in an equivalence classY that had a vertexv′ with an edge to vertex with labelA0
j

in GT. If there is no suchY , it implies that all the vertices inX adjacent to this new
vertex had the labelA1

j in their label sequence before anonymization. Therefore, the
new vertex with the labelA0

j can be removed and all equivalence classes ofX will
remaink-anonymous. Now note thatv has bothA0

j andA1
j in its label sequence in

G′
T. Hence, the anonymization procedure must create a new vertex labelledA1

j and
add an edge betweenv′ and this new vertex to preserve anonymity.

We now give a proof of correctness of our reduction.

Lemma 7 T can bek-anonymized by suppressingt attributes if and only if the subset
X of vertices inGT can bek-anonymized by adding2t new vertices.
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Proof (only if:) SupposeT can bek-anonymized by suppressingt attributes. For
every columnAj that is suppressed, we add two new verticesA0

j andA1
j and add an

edge from every row vertex labelledR to one of these new vertices that was not in its
label sequence originally. At the end of this procedure, if aset of rows ofT formed a
k-anonymous group, the corresponding set of row vertices inX form ak-anonymous
group. To do this, we added2t new vertices.
(if:) As shown in Lemma 6, we can assume that the anonymization procedure adds
new vertices in pairs. If the procedure adds a new pair(A0

j , A
1
j), then suppress the

columnAj in T. Note that if2t new vertices are added inG′
T, t attributes are sup-

pressed inT. At the end of this procedure, it is easy to see that if a set of row vertices
in X form ak-anonymous group inG′

T, then the corresponding set of rows ofT are
k-anonymous.

We now remark that this problem is also inNP. At the first glance, this is not
clear as there is no natural bound on the integert in terms of the size of the graph
G. However, based on Lemmas 3 and 4, it is clear that we can assume without loss
of generalityt ≤ |Σ|. Therefore, a membership in this language can be shown by a
list of at most|Σ| new vertices and a list of new edges. Therefore, this problemis
NP-Complete. This completes the proof of the theorem.

As a last note on the subject of tractibility, we remark that our algorithm given
earlier implies tractibility (in fact, describes anO(nk) algorithm) for the analogous
subset anonymization problem on unlabelled graphs. In the case of subset anonymiza-
tion, the new vertices need not be also anonymized. The problem is interesting from
a practical perspective, because it is non-obvious for an adversary to distinguish be-
tween vertices ofV′ and ofV \X .

Corollary 2 k-Labelled Subgraph Anonymization is inP if |Σ| = 1, for all k.

Proof This follows from the algorithm in§3, because anonymization of a labelled
subgraph with an alphabet size of1 is equivalent to anonymization of an unlabelled
graph simply by removing all the labels, performing the unlabelled anonymization,
and then relabelling every vertex. BecauseV′∩X = ∅, the third step of the algorithm
presented in§3 is not required. Consequently, exactlymax deficiency new vertices
are sufficient to anonymizeX , because the additional vertices were required for the
anonymization ofV′.

6 Related Work

The notion ofk-anonymity was introduced by Sweeney [36] within the context of
relational databases, with the insight that tabular microdata could be published with-
out compromising privacy if every tuple of a relation was made to look identical to
at leastk− 1 other tuples with respect to identifying and quasi-identifying attributes.
Subsequent to this, work by Meyerson and Williams [32] and byAgarwal et al. [2]
demonstrated hardness fork-anonymity of tables, even if the quasi-identifiers come
from a small-sized alphabet. Outside the relational model,the privacy of statistical
tables was studied towards inference control [14,21,35].
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Later, the desire to publish microdata for– and, consequently the concern of pri-
vacy with respect to– other types of data emerged, particularly for the growing body
of social network graphs. The knowledge transfer from the relational database com-
munity to the study of social networks was pioneered by Backstrom et al. [4], Zhel-
eva and Getoor [42], and Hay et al. [22], who formalised the first notions of attacks
against social network data.

This sparked a series of works on developing algorithms for anonymity against
progressively stronger adversaries, originating with thestudy of Liu and Terzi [29] on
degree-based attacks in unlabelled graphs and of Zhou and Pei [43] on neighbourhood
attacks in vertex-labelled graphs. Both of these papers offered an experimentally ef-
fective algorithm, while the latter also offered a proof ofNP-Hardness. The empirical
merits of this approach was verified by Ying et al. [40], who demonstrated that delib-
eratek-anonymization can preserve structural characteristics of graphs much better
than adding random noise does. Subsequently, Thompson and Yao [37] studiedi-hop
degree-based attacks. That is, an adversary’s prior knowledge includes the degree of
the target and the degree of its neighbors withini hops. They develop an inter-cluster
matching method for anonymizing graphs against 1-hop attacks through edge addi-
tion and deletion. Cheng et al. [8], in their work onk-isomorphism, formk pairwise
isomorphic subgraphs to achieve protection against two specific classes of attacks.
Wu et al. [39] proposed thek-symmetry model, wherein for any vertexv, there exist
at leastk − 1 other vertices to whichv can be mapped using an automorphism of the
underlying graph.

Each of the above adversarial models assumed that an adversary’s objective was
so-calledidentity disclosure: the identification of a vertex. Another attack isattribute
disclosure, which seeks not necessarily to identify a vertex, but to reveal sensitive
labels of the vertex. In the context of relational databases, this sort of attack was
formalised by Machanavajjhala et al. [30] with the introduction of l-diversity as an
anonymity measure, which requires that at leastl attribute values appear in each
equivalence class. Li et al. [28] then introducedt-closeness, which required instead
that thedistributionof attribute values in each equivalence class was withint of the
entire dataset. More recently, Chester and Srivastava adopted these ideas for social
networks with the introduction ofα-proximity [12].

The need for these progressively stronger adversarial models stems from the dif-
ficulty in deriving an analagous notion for equivalence of tuples when adopting the
k-anonymization model from relational databases. Despite all these results, our three
questions from the introduction of hardness, approximation guarantees, and class-
specific analysis are unaddressed for the majority of these models. Our work here,
and, indeed, our introduction of a vertex-addition approach, is meant to deepen un-
derstanding of the known adversarial models in the same manner that the work of
Agarwal et al. [2] and of Meyerson and Williams [32] did in therelational database
setting.

Subset anonymity is a relatively new consideration. Studies by Yuan et al. [41]
and by Ferri et al. [19] reveal that privacy concerns and needs are varied across and
among different user groups. This has prompted a couple recent works [9,11] that
consider the more generalk-subset-anonymity.
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Another set of related works is as follows. König [24] showed that, given a graph
G with maximum degreed, it is always possible to convertG into ad-regular graphH
such thatG is an induced subgraph ofH. In a subsequent paper, Erdős and Kelly [16]
strengthened the result of König by giving an efficient algorithm to determine the
minimum number of new vertices that must be added toG to obtain such a graphH.
This results were extended by the more recent the work of Akiyama et al. [3] and Bod-
laender et al. [6]. This result can be viewed as an optimaln-degree-anonymization of
G. Our approach in this paper can be viewed as a generalisationof these results with
two relaxations. First, as discussed by Yuan et al. [41], we may require that only a
subset of nodes be anonymized. For example, different people have different expec-
tations of privacy and some may not be concerned if they can bereidentified in the
anonymous graph. Second, we requirek-anonymity of the graph for an arbitraryk
(which we typically assume to be some reasonably small valuemuch less thand).

Our work here and the above references onk-anonymization, encompass at a
high level “data anonymization” methods. These methods first transform the data and
then release them. We note lastly that there is another general family of methods for
achieving data privacy, which does not release data, but, rather, only the output of
an analysis computation. The released output is such that itis very difficult to infer
from it any information about an individual input datum. Thedifferentially-private
methods (e.g., [15,31]) belong in this family, which has a much different objective
than anonymization.

7 Conclusion and Future Work

In this paper, we focused on the problem ofk-degree-anonymizinga subset of a graph
G to protect against a degree-based attack. We established theoretical results that
hold for any input graph by introducing a natural alternative to the formulation of the
problem present in literature. Specifically, we introduceda vertex-addition approach
wherein, givenG = (V,E, Σ, ℓ), the new graphG′ = (V∪V′,E∪E′, Σ∪Σ′, ℓ∪ℓ′) is
constructed such thatE′ ⊆ V′× (V′∪V). The optimisation constraint is to minimize
|V′|, which ensures thatG′ is near toG.

Within this setting, we established thatk-degree-anonymizinga given subsetX of
V for k ≥ 3 isNP-Complete, unless|Σ| = 1. For|Σ| = 1, we gave an efficient, exact
algorithm for subset anonymization ofX and an efficient, near-optimal algorithm to
also ensure thek-degree-anonymity of allX ∪ V′. Existing techniques in literature
provide no characterisation of tractibility nor approximation guarantees.

Furthermore, we demonstrated empirically that the resultant graphG′ of our algo-
rithm is quite near to the input graphG with respect to five structural characteristics
of graphs. We contrasted the output graphs for our algorithmwith those produced by
the state-of-the-art algorithm which does not allow a vertex set expansion, achiev-
ing highly comparable performance. This suggests that the vertex-addition approach
performs well in real-life in addition to the strong theoretical claims that we have
proven.

The success here implies that there are interesting research directions with which
to extend this work. We focused on foundational work with a simpler adversarial
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model to establish the credibility of adding “fake” vertices. Clearly, extending the
algorithmic work to more challenging adversaries would be well worthwhile since
structural graph characteristics that may equally well preserved by doing so. Our
hardness result dictates that an appropriate pursuit for the case of vertex-labeled
graphs would be to design approximate or heuristic algorithsms. Finally, another re-
search direction would be to enhance the algorithm by addingedges amongV′ ×V′

during the third step of our algorithm in a utility-orientedapproach such as that in-
troduced by Wang et al. [38].
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