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ABSTRACT
Triad enumeration yields more detailed information than tri-

angle enumeration. However, triad enumeration is more complex
as it has to list the edges as well as the nodes of the triads. Fur-
thermore, it is challenging to do on large graphs because of two
reasons: how to deal with large amounts of data using limited
memory, and how to do the computation in a reasonable amount
of time. While distributed computing can take care of both prob-
lems, it requires large investment and high operating cost, as well
as a distributed algorithm design which is not always possible. In
this paper we show that triad enumeration of very large graphs
at the web-scale can actually be done on a single commodity
machine. Memory space limitation can be overcome by using
data compression and partial loading. Performance can be greatly
improved through optimized preprocessing and parallelization.

1 INTRODUCTION
Triangles play an important role in network analysis. For

example, the presence of triangles is an indicator of communities
in the network [13]. Triangles are also central to computing the
connectivity of a graph [2], the clustering coefficient [18], and
the transitivity [11]. There are many practical applications of
these, for example, detecting fake users in social networks [19]
and uncovering hidden thematic layers in the Web [9].

Most real world networks have directed relationships, and
therefore we should consider directed graphs for better represen-
tations of those networks. A triad is a subgraph of three nodes in
a directed graph [1, 8]. When each pair of the nodes is connected
we have a closely connected triad. Since we are only interested
in closely connected triads we will simply call them triads in this
paper. There are seven types of triads, called by some authors as
seven types of triangles [14, 16]. They are shown in Fig. 1. Note,
however, that we define our own numbering here.

Enumerating triads means listing the edges as well as the
nodes inside every triad. Triad enumeration would reveal a more
detailed picture of the network, and hence opening upmore possi-
ble applications. For example, transitivity can be more accurately
analyzed by using triads [2], and directed clustering coefficient
can be used as a measure of systemic risk in complex banking
networks [15]. Also, triad enumeration is an important element
in social network analysis [17].

Nonetheless, triad enumeration is more complex than triangle
enumeration. The general belief is that it is considerably more
difficult [14] and that it would take much longer running time.
We found that this is not necessarily the case. Although there are
some challenges, it is possible to devise an efficient algorithm
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Figure 1: Seven types of triads.

which, combined with a compression framework such as Web-
Graph, is able to enumerate triads on a graph with a billion nodes
and billions of edges using a single commodity machine.

1.1 Related Work
Pajek is a well known graph analysis software for triad enu-

meration. The triad census algorithm by Batagelj and Mrvar [1],
which is employed in Pajek, has been known as the standard
algorithm to enumerate triads for several years. However, this
program is not suitable for very large graphs with millions of
nodes and edges.

Chin et al. [7] proposed a compact data structure where both
outgoing and incoming edges are listed in the same adjacency list,
and the edge direction is encoded using the 2 lowest bits out of the
32 bits (i.e., using int) in each entry. This data structure is suitable
for parallel computation using shared memory architectures.

This idea was further refined by Parimalarangan et al. [12],
who proposed two types of algorithms, intersection based (AI)
and marking based (AM), as the most efficient algorithms to
enumerate triads on shared memory platforms.

While those ideas significantly improve the running time,
there is a cost on the scalability. With two bits used for edge di-
rection, the order of the graphs that can be processed is reduced.
This becomes a problemwhen we want to analyse a graph of a bil-
lion nodes. Theoretically, we can switch to 64-bit integers and the
problem should be moot. Practically, however, this would at least
double the memory requirement. With limited memory budget,
space is already a problem for analysing very large graphs.

1.2 Contributions
1. We implemented Parimalarangan et. al. AI algorithm in

Java. We chose AI over AM because it uses less memory.
AM is unable to work in a consumer-grade machine of
32GB memory even for graphs of moderate size. Our code
is designed for execution on a single machine with parallel
threads. Together with optimized preprocessing on the
input graphs, we were able to run triad enumeration faster
than the ones reported in Parimalarangan’s paper, hence
raising the known record.



2. For enormous graphs, such as ClueWeb12, AI is not able
to work in a consumer-grade machine of 32GB memory.
In order to address the case of such graphs we propose
another algorithm,which has better scalability. It uses both
the graph and transpose graph as input, and computes the
node connections on the fly.

3. We are able to employ WebGraph compression which
archives a more than 7-fold compression ratio and thus
allows loading big graphs (or significant parts of them) in
mainmemory. This enables our new algorithm to complete
triad enumeration on ClueWeb12 in the aforementioned
machine.

2 TRIAD ENUMERATION
The Batagelj and Mrvar triad census algorithm [1] assigns a

code to each pair of nodes to represent the directed edges between
them. For each triple of nodes it then uses a table to find the triad
types based on the combined codes. Although this algorithm can
do triad enumeration in subquadratic time, it is not fast enough
for very large graphs with millions of nodes and edges.

Chin et al. [7] developed a compact data structure whichmakes
it easier to parallelize the computation. They combined the ad-
jacency list to contain both outgoing and incoming edges. The
edge information or the link is coded using 2-bits: 01 (forward),
10 (backward), and 11 (both), embedded in the neighbour node
labels inside the list. Suppose the nodes were labeled by using
32-bit integers. The bits are shifted to the left by two, and the
two lowest bits are then used for the edge direction. Thus, only
30 bits can actually be used to label the nodes.

Parimalarangan et al. [12] took on this idea and combined it
with the most efficient algorithms known for triangle enumera-
tion on single machines [10]. They came up with two algorithms,
the AI algorithm which is intersection based, and the AM algo-
rithm which is marking based. Although AM can in some cases
be faster it requires more memory than AI. Therefore, we chose
AI and implemented it in Java for our base comparison. We use
parallel streams introduced in Java 8 to make use of the multiple
threads in our machine.

In our experiments, we use directed networks and their trans-
pose in compressed WebGraph format. For our implementation
of AI, we first build the compact data structure (of edges and
their direction 2-bit-encoding) from these datasets and save it in
plain text format, which is then used as input to the AI program.

TheWebGraph framework [5, 6] provides compression schemes
suitable for graph adjacency lists. The compression factor can
be more than seven-fold, significant in saving disk space. The
framework also provides some tools to work with files in We-
bGraph format. One of them is the loadMapped, which allows
partial loading of the dataset using memory-mapped files. As we
will see later, this is one of the key tools that enable us to process
very large graph such as ClueWeb12. Note, however, that using
WebGraph comes with the cost of decompressing the dataset.

To improve the performance, we did some preprocessing on
the graphs (before building the compact data structure). First,
note that each triad should be iterated only once. To avoid multi-
ple counting, we assert condition u < v < w for a triad (u,v,w).
Consequently, we only need to consider bigger neighbours. Also,
permutation on the labels should not change the number of triads
in a graph. Thus, we first sort the nodes according to degrees
from lowest to highest, relabel them, and then cut out smaller
neighbours from the adjacency list. That is, suppose Nu is the

Algorithm 1 Four Pointers Triad Enumeration

Input: A directed graph G = (V ,E) and its transpose GT

Output: The number of each type of triads in G, ∆i .
1: ∆1 ← 0, . . . , ∆7 ← 0
2: for all u ∈ V do ▷ Parallelize
3: while there is next do
4: Find next neighbour in N+(u) and/or N−(u): v .
5: Code the link uv as e1: either 01, 10 or 11
6: while there is next do
7: Find next common neighbour of u and v: w , in
(N+(u),N−(u)) and (N+(v),N−(v)).

8: Code the links vw as e2, andwu as e3.
9: Look up triad type i using e1, e2, e3.
10: enum(u,v,w,e1,e2,e3)
11: ∆i ← ∆i + 1
12: return ∆1, . . . , ∆7

set of neighbours of u after relabelling, then after the cut the
adjacency list only contains Nu \ {v |v < u}. This is done simul-
taneously for the graph and its transpose as the relabelling must
be the same for both. After this preprocessing, a node which
originally has the highest degree would have zero/no neighbours.
The degree distribution in the new adjacency list would have a
hill shape with highest (effective) degrees gathered in the middle.
When we parallelize on the first node iteration, this distribution
can lead to imbalanced workload among the threads. To alleviate
this, we do a further preprocessing which redistributes the nodes
in steps of 10,000. That is, we pick the nodes and rearrange them
in order (0, 10000, 20000, . . . , 1, 10001, 20001, . . . ), and then relabel
them as (0, 1, 2, . . . ).

The drawback of the compact data structure solution is that
it leads to a reduced scalability. In Java, the 32-bit integer data
type can be used to label up to 231 nodes (because we can have
only signed integers), but with 2 bits used for edge information,
it can label only up to 229 (or about 1/2 billion) nodes. This
becomes problematic when we want to analyze a graph such
as ClueWeb12 which has almost a billion nodes and about forty
two billion edges. Theoretically, we can switch to 64-bit long
data type and be able to do ClueWeb12. However, we still need
to overcome the memory limitation problem. With ClueWeb12,
forty two billion edges translates to more than 300GB RAM if we
use 8 bytes for each, which is way beyond the typical amount of
RAM in current commodity machines.

In order to process ClueWeb12, we tried several modifications
of the AI algorithm, separating the edge direction information
from the node labels in the adjacency list. For instance, we put it
in separate list of bytes, where each byte encoding a link. We also
tried to use BitSet to more compactly encode the edge and save
the space, and WebGraph for the combined adjacency list. How-
ever, none of our attempts succeeded in running on ClueWeb12
using 32GB RAM.

To this end, we develop a new algorithm which computes the
type of connections between each pair of nodes on the fly, using
both the graph and its transpose as input. Using this algorithm,
and partial loadingmethod ofWebGraph , wewere able to process
ClueWeb12 on our machine with a budget of 32GB RAM. The
algorithm, in a simplified version, is shown in Algorithm 1. We
call this Four Pointers Triad Enumeration algorithm due to the
fact that we use four pointers: one on each of N+(u), N−(u),
N+(v), and N−(v). Here, N+(u) is the set of out-neighbours of u



in G, while N−(u) is the set of out-neighbours of u in GT . This
algorithm is an expansion of the 2-pointer algorithm commonly
used for set intersections.

Algorithm 1 iterates over the first node u. This iteration can
easily be parallelized. For each, it checks both N+(u) and N−(u)
to find the neighbours of u and their respective links. For each
neighbour of u, v , it finds their common neighbours using four
pointers. For each,w , it looks up the triad type based on the links
among the three nodes (u,v,w). In line 10, enum() is a space
holder for an enumeration or listing function.

3 EXPERIMENTS AND DISCUSSIONS
3.1 The Setup

We ran our experiments on a machine with dual Intel Xeon
E5620 CPUs and 64GBRAM. Its price is less than $3K, qualifying it
as a commodity machine. However, to make a better comparison
with other papers, we allowed only 32GB of RAM to be used by
the Java virtual machine. The Xeon CPU has a clock speed of
2.40 GHz and 8 threads (16 threads total for the dual). The OS is
Linux Ubuntu 14.04.5. We used Java 8 and the WebGraph 3.6.1.

We have five programs to run, listed in Table 1. Both AI and
4P are parallelized on the first node iteration.

Name Description
SC Sort and cut preprocessing
RD Node redistribution
CDt Build compact dataset
AI Our AI implementation
4P Four pointers enumeration

Table 1: The programs used in this experiment.

3.2 The Datasets
We applied our algorithms on five networks in compressed

WebGraph format. The datasets were downloaded from the Web-
Graph website [4] (http://law.di.unimi.it/datasets.php). For each,
we downloaded both the graph and the transpose graph.

Here are our selection of networks:

1. cnr-2000: a small crawl from the Italian CNR (Consiglio
Nazionale delle Ricerche).

2. ljournal-2008 (abbreviated as ljournal): a snapshot from
LiveJournal (https://www.livejournal.com/) in 2008.

3. arabic-2005 (abbreviated as arabic): a of websites that
contain arabic, performed by UbiCrawler [3] in 2005.

4. uk-2005: a shallow crawl of .uk domain, performed by
UbiCrawler [3] in 2005.

5. clueweb12 (abbreviated as clueweb): a crawl of English
webpages, created by the Lemur Project
(http://www.lemurproject.org/clueweb12/index.php), with
outlink nodes removed.

The statistics of these datasets are listed in Table 2. Notice
that G and GT can have different sizes because the results of the
compression can be different. The smallest dataset, cnr-2000,
has 3.2M edges, while the largest dataset, clueweb, has more
than 42B edges. The degree statistics are listed in Table 3. The
statistics of the resulting graphs after preprocessing are listed in
Table 4. Note that redistribution will not change these statistics.

Size of
Name |V | |E | G GT

cnr-2000 325,557 3,216,152 1.2M 920K
ljournal 5,363,260 79,023,142 105M 105M
arabic 22,744,080 639,999,458 141M 96M
uk-2005 39,459,925 936,364,282 201M 140M
clueweb 978,408,098 42,574,107,469 12G 7.0G

Table 2: Dataset statistics of the directed graphs. The sizes
are of the compressed WebGraph files, in bytes.

Name d+max d−max davg d−max/d
+
max

cnr-2000 2,716 18,235 9.9 6.7
ljournal 2,469 19,409 14.7 7.9
arabic 9,905 575,618 28.1 58.1
uk-2005 5,213 1,776,852 23.7 340.9
clueweb 7,447 75,611,690 43.5 10,153.3

Table 3: Degrees statistics in the original datasets.

Name |Eeff | |ET ,eff | d+,effmax d−,effmax
cnr-2000 2,580,192 548,518 1,336 81
ljournal 42,947,594 35,043,920 1,257 397
arabic 534,631,498 96,522,171 6,646 3,126
uk-2005 759,564,189 161,780,889 5,213 584
clueweb 36,605,200,001 5,968,907,468 5,873 4,242

Table 4: Dataset statistics of the effective directed graphs.

3.3 Results
We ran the AI, and 4P triad enumeration programs on the

chosen datasets. We verified that we got the same numbers from
both programs, when run with or without pre-processing. The
numbers of triads for each types are listed in Table 5.

In Table 6 we list the running times. The graphs had been
preprocessed by the SC program (sort and cut) before being used
as input, but without node redistribution. The running times
on graphs without preprocessing are not shown here. However,
note that this preprocessing is important in keeping the running
time low. The CDt program takes the graph and its transpose
in the compressed WebGraph format and produces a compact
dataset written into a plain text file which is then used as input
by the AI program. The 4P program takes the WebGraph files
directly as input. Therefore, we compare 4P with AI+CDt. Except
for cnr-2000, AI+CDt is faster than 4P. This is due to repeat
decompression cost in 4P. However, AI+CDt is unable to process
clueweb for the reason that is explained in the previous section
(inability to represent 1 billion nodes using 29 bits for each), while
4P can. Notice that our AI implementation can process arabic
in a shorter time than the one reported in Parimalarangan’s
paper [12] (In that paper they did not report the time to build
the compact data set, CDt, and excluded the loading time. Our
numbers here for AI include the loading time.).

Next, we checked whether redistribution can improve the per-
formance. In Table 7 we list the running times on the graphs that
had been preprocessed and which nodes had been redistributed.
The cost of redistributing the nodes is listed as RD. We see that
this RD cost can be quite significant. Taking this cost into consid-
eration, it is not always worth it to do redistribution. For example,
on ljournal, the 4P time without RD is 81 seconds, while RD +



Name ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7
cnr-2000 10,342 9,899,367 85,969 2,433,041 6,736,504 419,472 1,392,934
ljournal 530,051 86,777,707 10,421,919 69,748,792 44,608,271 80,177,727 118,890,977
arabic 2,668,704 6,906,765,421 30,427,662 1,571,745,235 11,765,868,185 384,594,679 16,233,290,956
uk-2005 5,335,890 5,198,533,331 48,779,535 1,773,901,843 9,499,139,863 411,396,906 4,842,278,688
clueweb 281,444,867 517,684,665,693 2,261,300,705 153,674,084,413 790,291,640,762 28,556,769,295 502,545,385,030

Table 5: The counts of triads of each types on the selected networks.

Name SC AI CDt AI+CDt 4P
cnr-2000 2.75 1.25 2.06 3.31 3.0
ljournal 74 27 28 55 81
arabic 200 429 206 635 2961
uk2005 311 354 319 673 796
clueweb 12,870 - - - 115,960

Table 6: The running time (in seconds) of triad enumera-
tion using Four Pointer algorithm (4P), and AI algorithm
(AI). Also listed are the preprocessing time (SC), and the
time to build the compact dataset (CDt). Since, 4P does not
need compact dataset, we compare 4P with AI+CDt.

4PRD is 86 + 30.5 = 116.5 seconds. For arabic, though, the RD
is helpful in bringing the overall cost down.

Name RD AIRD CDtRD AI+CDtRD 4PRD
cnr-2000 3.7 0.98 1.49 2.5 3.2
ljournal 86 18.4 22.8 41.2 30.5
arabic 453 215 154 369 483
uk2005 632 312 248 560 366
clueweb 30,413 - - - -*

Table 7: The running time (in seconds) of triad enumera-
tion using Four Pointer algorithm (4P), and AI algorithm
(AI) on redistributed graphs. *The run on clueweb cannot
be done in a reasonable amount of time.

Notice that with RD our 4P becomes competitive to AI+CDt.
This can be understood from the fact that workload imbalanced
affects 4P more than AI since 4P has to do decompression on the
adjacency list, and hence RD benefits 4P more as it reduces the
imbalance. It is faster on ljournal and uk2005, and just a bit
slower on cnr-2000 and arabic.

The redistribution, however, has an unwanted effect on Web-
Graph compression. The compression works best if the distances
among the neighbour nodes are not large. With redistribution,
there are large distances within a neighbour set, which in turn
lower the overall compression ratio. As such, we do not advise
performing redistribution on very large graphs such as clueweb.
For such graphs sort-and-cut preprocessing is all what is needed
for our algorithm 4P to complete in reasonable time.

4 CONCLUSIONS
We have shown that through optimized preprocessing and

parallelization we are able to run triad enumeration on very large
graphs using a single commodity machine in reasonable time. We
also designed an algorithm, 4P, with better scalability than the
state-of-the-art, which, with some trade-off on the performance,
can run on graphs of a billion nodes and billions of edges, count-
ing trillions of triads. In our solution, the WebGraph framework

plays an important role in alleviating the memory problem. In
conclusion, our results show that triad enumeration can be done
on a commodity machine even for very large graphs such as
ClueWeb12.
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