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Abstract The skyline operator determines points in
a multi-dimensional dataset that offer some optimal
trade-off. State-of-the-art CPU skyline algorithms ex-
ploit quad-tree partitioning with complex branching to
minimize the number of point-to-point comparisons.
Branch-phobic GPU skyline algorithms rely on com-
pute throughput rather than partitioning, but fail to
match the performance of sequential algorithms.

In this paper, we introduce a new skyline algorithm,
SkyAlign, that is designed for the GPU, and a GPU-
friendly, grid-based tree structure upon which the al-
gorithm relies. The search tree allows us to dramati-
cally reduce the amount of work done by the GPU al-
gorithm by avoiding most point-to-point comparisons
at the cost of some compute throughput. This trade-off
allows SkyAlign to achieve orders of magnitude faster
performance than its predecessors. Moreover, a NUMA-
oblivious port of SkyAlign outperforms native multi-
core state-of-the-art on challenging workloads by an in-
creasing margin as more cores and sockets are utilised.
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Hotel Price Rating
A $45/nt ***
B $75/nt ****
C $50/nt **

Table 1: Sample hotel dataset. A and B are both in the
skyline, but C is not because it is dominated by (i.e.,
has less desirable values for every attribute than) A.

1 Introduction

The skyline [4] is a well-studied operator for selecting
the most competitive points from a multi-dimensional
dataset. Table 1 gives a canonical example, wherein
one is to select from amongst a set of hotels (two-
dimensional points). The task can be simplified by first
eliminating uncompetitive options. In this example, ho-
tel C is clearly worse than A, because it is both more
expensive and lower rated. The skyline is the subset of
data points, {A, B}, that are not clearly worse than any
others; it filters the uncompetitive points, such as C.

The skyline is expensive to compute, so, like several
other database operators (c.f., [9,10,13]), could benefit
from co-processor acceleration. The GPU, in particu-
lar, offers high compute throughput from extreme par-
allelism, running tens of thousands of threads on thou-
sands of cores to hide memory latencies. Indeed, GPU
skyline algorithms already exist [2,7] and approach the
device’s maximum theoretical compute throughput.

However, this throughput comes at a cost: compared
to state-of-the-art sequential algorithms [14, 23], the
most efficient of these GPU algorithms, GGS [2], does
up to 650× more work (Section 6). Even modern GPUs
offer insufficient parallelism to overcome this volume of
work; for benchmark datasets, computing skylines se-
quentially is up to 3× faster than on the GPU. Frankly,
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it is better not to use the GPU at all than to use cur-
rent GPU skyline algorithms. Because the algorithms
are already high-throughput, they must do less work if
they are to outperform sequential computation. Thus
the challenge: to improve work-efficiency on an archi-
tecture that thrives on compute throughput.

Designing work-efficient, parallel skyline algorithms
is already non-trivial on more flexible multi-core archi-
tectures. Efficient sequential skyline algorithms [14,23]
derive performance from extensive use of trees, recur-
sion, strict ordering of computation, and unpredictable
branching. Many of these techniques are not conducive
to parallel performance, in general. On the GPU, where
threads are executed in groups (called warps) such that
blocks of warps execute in arbitrary order and threads
within a warp always execute the same instruction (i.e.,
are step-locked), recursive data structures, ordered com-
putation, and branch divergence can be debilitating.

So, we introduce a new approach to skylines wherein
we globally, statically partition the data into a grid de-
fined by quartiles in the dataset. We recognise that the
efficiency of the recursive partitioning algorithms [14,
23] does not come primarily, as thought, from their
point-based partitioning, but rather from the memoisa-
tion of pairwise relationships whenever two points are
compared. (Section 4.1 reviews this.) The memoisation
can still be done with our static grid. Moreover, we can
assign homogeneous work to step-locked threads by al-
locating it in alignment with the static grid cells. The
result is hundreds-fold less work than GGS [2].

The compromise is that, even with our static grid
scheme, skipping point-to-point comparisons still incurs
branch divergence. Our non-traditional trade-off, then,
is hardware throughput: we maximise neither instruc-
tion nor memory throughput, but we are work-efficient,
and can therefore run an order of magnitude faster than
state-of-the-art multicore while remaining bound by the
availability of physical compute resources. So, our pro-
posed algorithm will scale elegantly with the increase
in available parallelism of next-generation GPUs.

Compared to the earlier version of this work [3], this
paper investigates further impacts of work-efficiency.
With the larger cache sizes, out-of-order execution, and
superscalar processing on modern CPUs, multicore ar-
chitectures can exploit parallelism that is difficult to ex-
pose to the GPU. We create a NUMA-oblivious port of
SkyAlign and reclaim much of the presumed-forfeited
compute throughput. While a similar port of GGS [2]
obtains the best instruction throughput on the CPU,
SkyAlign leverages the combination of work-efficiency
and throughput to obtain state-of-the-art performance
on the CPU, as well. Extensive new experiments show
that the GPU-specific considerations account for the al-

id x0 x1 x2 Dominated? Pruned?
p1 2 2 1
p0 1 2 3
p2 2 4 1 X
p3 3 3 3 X X

Table 2: Example of dominance and the GPU-friendly
prefilter. Points p2 and p3 are dominated by p1, so not
part of the skyline. The max of each row is bolded. The
min of these, 2, is used as a threshold to prefilter points.

gorithm’s excellent architectural portability. In all, this
paper presents the following concrete contributions:

– a GPU-friendly, grid-based search tree, similar to
the quad-tree used by CPU skyline algorithms;

– a novel, work-efficient GPU skyline algorithm that
outperforms both multicore and GPU state-of-the-
art by at least an order of magnitude; and

– state-of-the-art multicore skyline performance, with
better parallel scalability, by porting our work-efficient
GPU algorithm to the CPU.

This paper is organised as follows. Section 2 for-
malises the skyline query and describes key differences
between GPU and CPU computing. Section 3 details
key algorithmic advances in skyline literature. We de-
scribe in Section 4 the global, static partitioning scheme
according to which our search tree is constructed and
present our proposed GPU algorithm, SkyAlign, in Sec-
tion 5. Section 6 evaluates SkyAlign against state-of-
the-art sequential, multicore, and GPU algorithms and
Section 7 evaluates the multicore performance of ports
of GPU skyline algorithms. Section 8 concludes.

2 Background

2.1 Skyline computation

To begin, let P be a dataset consisting of n = |P | points
in d dimensions. Arbitrary points in P are denoted by
pi, pj , or pk. The ith point in P , with the current order-
ing of P , is denoted P [i]. The value of pi (or P [i]) in the
δth dimension is denoted pi[δ] (or P [i][δ]). For example,
in Table 2, n = 4, d = 3, and p1[2] = P [0][2] = 1. The
skyline is defined via the concept of dominance. A point
pi dominates another point pj if the points are distinct
and pj does not have a smaller value1 than pi:

Definition 1 (Dominance [4]) Point pi dominates
point pj , denoted pi ≺ pj iff:

(∃δ ∈ [0, d), pi[δ] 6= pj [δ])∧( 6 ∃δ′ ∈ [0, d), pj [δ′] < pi[δ′]) .
1 Without loss of generality and to simplify exposition, we as-

sume smaller values are better, but to handle mixed preferences
(e.g., Table 1) is a straight-forward adaptation.
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By pi ≺distinct pj we denote the right-hand clause
of that expression. This is useful when the distinctness
of pi and pj can be safely assumed, for it has only half
the cost of the full expression. If neither pi ≺ pj nor
pj ≺ pi, we say that pi and pj are incomparable, denoted
pi ≺� pj . Note that dominance is transitive (i.e., pi ≺
pj ∧ pj ≺ pk =⇒ pi ≺ pk), but incomparability is not.

Given an input dataset, P , the skyline is the subset
of P that is not dominated:

Definition 2 (Skyline [4]) The skyline of P , denoted
SKY(P ), is the set:

SKY(P ) = {pi ∈ P : 6 ∃pj ∈ P, pj ≺ pi}.

Considering Table 2 again, both p2 and p3 are dom-
inated by p1, because none of the points are equivalent
and neither p2 nor p3 has a smaller value on any dimen-
sion than does p1. Point p0, on the other hand, is not
dominated by p1, because p0[0] < p1[0]. Since p1 6≺ p0
transitively implies that neither p2 nor p3 dominate p0
either, the skyline is {p0, p1}.

Measuring skyline “work” Determining whether
pi ≺ pj requires evaluating Definition 1, called a dom-
inance test (DT). Although DTs are cheap, especially
when vectorised as in [6], their 6d + 4 instructions2 is
still more expensive than the surrounding computation,
which consists mostly of control flow. More importantly,
each DT loads 2d floats into registers, a cost that is
poorly amortised by the 6d + 4 instructions. As such,
the cost of loading data for DTs can be a constrain
compute throughput, especially if the loads are random
accesses and the DTs are unpredictable.

As such, the performance of skyline algorithms is
often measured in terms of the number of DTs exe-
cuted [14, 23]. Minimising DTs reduces both the com-
pute and memory workload of an algorithm. Compared
to the n(n − 1) DTs used in a brute-force, quadratic al-
gorithm, DTs can be avoided with transitivity relative
to a common “pivot” point. This can be ascertained
with a mask test (MT) that loads just two integers and
conducts just 3 instructions (more on this in Section 4).

We define the number of these two high-level oper-
ations as the work done by a skyline algorithm:

Definition 3 (Skyline work) The work done by al-
gorithm A to compute SKY(P ) using D DTs and M
MTs is:

W(A, P ) = (3M + (6d + 4)D).
2 Obtained by counting low-level operations in Algorithm 1

of GGS [2] (the branch-free dominance test). Branching DTs are
ill-suited to GPUs and have unpredictable, variable cost.

An algorithm requiring a low amount of work is
called work-efficient. While the exact cost of DTs versus
MTs depends on cache hits, cache line reuse, vectorisa-
tion, and other architectural events, work provides a
reasonable abstract measure of performance of skyline
algorithms. Unlike previous work (e.g. [5, 14]), which
only counts DTs, our work measure captures that, al-
though MTs are much cheaper that DTs, they are also
significantly more frequent in work-efficient algorithms.

2.2 Differences between GPU and CPU architectures

The GPU offers tremendous parallelism; however, it has
important architectural differences from the CPU. We
briefly review those pertinent to this paper.

Computational throughput on the GPU can reach
teraflops by running tens of thousands of threads on
thousands of (relatively slow) cores. The threads are
grouped into warps of size 32, and warps are grouped
into thread blocks (of tuneable size). Warps are rapidly
switched out for others when waiting for memory loads
in order to hide latencies. So, compute throughput de-
pends on launching enough warps that some are always
ready for execution. In contrast, the CPU hides laten-
cies by executing instructions when they are ready, not
necessarily in order (out-of-order execution) and with
advanced branch prediction in order to prefetch data.3

All threads in a warp are step-locked, i.e., they ex-
ecute the same instruction at the same time (although
some can idle instead). Branch divergence results when
two threads within a warp evaluate a condition differ-
ently, and thus must execute separate instructions. This
serialises computation: first some threads idle while oth-
ers execute, and then the first execute while the oth-
ers idle. The cost of branch divergence can be min-
imised by ensuring conditions have only one branch
(i.e., no ELSE statement), but this still idles threads,
affecting compute throughput. In contrast, threads on
a CPU are fully independent; however, a large number
of conditional statements may still negatively impact
the branch prediction accuracy. Each misprediction re-
quires a machine clear, which costs several cycles and
any execution of mispredicted instructions is wasteful.

Thread blocks are launched concurrently and the or-
der in which they are executed is controlled by the hard-
ware. Therefore, there are two means of introducing or-
der into computation: either at the thread-level (the se-
quence of instructions executed by each thread) or with
synchronisation points (where all active thread blocks

3 Hyper-threading also hides latencies, but it is not as im-
pactful as the features that we will explicitly analyse.
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finish before new ones are launched). Ordered compu-
tation within a thread reduces compute throughput by
limiting opportunities for instruction-level parallelism.
Synchronisation also reduces compute throughput, be-
cause the last thread blocks are unlikely to finish at the
same time, leaving physical resources idle.

Maximising cache utilisation is important for the
GPU as well as the CPU to minimise latencies, and
they both have highly stratified memory hierarchies.
Nonetheless, there are some important distinctions.

The GPU memory hierarchy consists of global mem-
ory (6GB on our device) and an L2 cache (1.5MB on
our device) that is shared among all resources, while
clusters of 192 cores each have three local lower-level
caches. The read-only texture cache (48KB) has the
lowest latency. 64KB is available for shared memory
and the L1 cache, and the proportion devoted to each
is configurable. A portion of shared memory is allocated
to each thread block and the L1 cache is local to the
set of thread blocks sharing a cluster of cores. While
L2 and L1 behave like naive, inclusive caches, one can
choose to read (read-only) data through the faster tex-
ture cache. Shared memory can be used as a heap, with
allocations and accesses controlled from software.

Our CPUs have a three-level, inclusive cache hierar-
chy, where L1/L2 are local to each core and L3 is shared
by all cores on a socket. Memory is distributed across
sockets, which leads to non-uniform latencies for each
core (i.e., NUMA effects): memory operations across
sockets incur higher latencies. NUMA-oblivious imple-
mentations, e.g., those in Section 7, rely on caching and
prefetching to circumvent the cost, rather than explic-
itly managing on which socket memory is allocated.

3 Related work

The skyline operator was introduced by Börzsönyi et
al. [4] and has since received considerable research at-
tention. We are primarily interested in milestone de-
velopments in main-memory and parallel skyline algo-
rithms and review a key selection of them below.

3.1 Sort-based (and GPU) skyline algorithms

Sort-based skyline algorithms use transitivity and mono-
tonicity to obtain efficiency using a block-nested-loops
(BNL) algorithm [4] over sorted data.4 BNL iterates
over points pi, conducting a DT between pi and all pj ,
j < i, that is in the current solution. If pj ≺ pi, then
pi is discarded and control passes to the next point.

4 we assume “large” memory to simplify the algorithm.

If pi ≺ pj , then pj is removed from the current solu-
tion. BNL can be parallelised (e.g., on FPGAs [21]),
but it is inefficient in terms of work. The sort-first sky-
line (SFS) [8] algorithm sorts the points by Manhattan
Norm5 prior to executing BNL. The sort key ensures
P [i + x] 6≺ P [i], for any positive x. In other words, once
a point is added to the solution, it will never be re-
moved. Furthermore, the sort order loosely correlates
with the probability of dominating a random point; so,
dominated points are discarded faster. The SaLSa [1]
extension changes the sort key to min attribute value,
which permits halting once the smallest max seen in the
buffer is less than the min at the head of the unpro-
cessed list. Points can also be sorted by z-order [15],
another monotonic sort key.

Existing GPU skyline algorithms are adaptations of
these ideas for the GPU. The GNL [7] algorithm launches
a thread for every point. The thread working on behalf
of pi treats the half of the dataset following pi (wrap-
ping around to the beginning) as the candidate window.
For any point pj determined to be dominated by pi,
the thread increments pj ’s global counter (initialised to
zero). If pj ≺ pi, then pi’s counter is incremented. Af-
terwards, any points with non-zero counters are not in
the solution. These counters avoid any synchronisation;
so, GNL achieves very high compute throughput.

The GGS algorithm [2], similarly to SFS, first sorts
the data by Manhattan Norm. For each iteration, the
first α sorted points are declared the candidate buffer. A
thread is launched for every point, comparing its point
to every point in the buffer. Each iteration is succeeded
by a synchronisation step in which dominated points
are removed, non-dominated points in the α-block are
output as skyline points, and the remaining data is re-
coalesced. This block-wise processing (i.e., tiling) aug-
ments the monotonic sort with good spatial locality.

The main disadvantage of sort-based algorithms is a
large skyline generates a large candidate buffer, causing
performance to degrade to brute-force quadratic.

3.2 Partition-based skyline algorithms

Another class of skyline algorithms partitions the data
space or dataset. The first of these was recursive Divide-
and-Conquer [4] that halves the data space at an arbi-
trary dimension’s median and solves each half. Results
are merged when backtracking from the recursion.

A non-recursive version of this is found in many par-
allel algorithms, which vertically cut the data file, solve
each slice on a worker, and then merge the results (e.g.,
PSkyline [12]). In such setups, a key consideration is

5 Manhattan Norm is the sum of all attribute values.
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how the file is cut (e.g., so that points within the same
slice are cosine similar [20]), to better balance workload
distribution. This approach is common for distributed
skyline computation (see the survey by Hose et al. [11]),
but does not enable one-word mask tests.

Sequential partition-based algorithms have evolved
towards recursive, point-based partitioning [14, 23]. For
each (recursive) partition, a skyline point, called the
pivot, is found, and the other points are partitioned
based on their relationship to the pivot. A search tree
is constructed from the pivots to accelerate the merge
phase, which is typically the bottleneck of partition-
based approaches. These methods vary on how the pivot
is selected, either as a random skyline point [23] or
as the one whose attribute values have the smallest
normalised range [14], and in the exact layout of the
search tree. The Hybrid multi-core algorithm [5] is a
point-based method that flattens the tree into an array
structure for better access patterns and processes points
in blocks of size α to improve parallelism. We describe
these point-based methods in more detail in Section 4.1.
The proposed SkyAlign algorithm is a partition-based
method, but it is unlike other algorithms in this class,
because it is split statically and has no merge.

3.3 Other key skyline algorithms

A few algorithms do not fit well into the categorisation
above. The index-based methods (using B+-Trees [19]
or R-Trees [17]) are not interesting in our context be-
cause they cannot be applied at arbitrary positions of a
query plan. A number of MapReduce algorithms have
recently emerged (e.g., [16, 18]). The more recent of
these [16] partitions each dimension into m even-width
cells to produce a grid with md cells. They encode a bit-
string of length md with 1’s for and only for non-empty
cells. They then use a method similar to PSkyline [12],
but exploiting bitstring encodings to avoid regions of
points that cannot include skyline points. DTs are ac-
celerated by vectorisation in the VSkyline [6] method.

4 GPU-friendly partitioning

The (work-)efficiency of skyline algorithms comes from
skipping DTs. The incomparability of two points pi, pj

can often be ascertained by transitivity if the relation-
ship to a third point, pk, is known for both pi and pj .
We call this a mask test (MT), since it is done with rep-
resentative bitmasks. The relationship of pi[δ] to pk[δ]
(and also of pj [δ] to pk[δ]) is represented with one bit
for each δ ∈ [0, d). The masks are sometimes sufficient
to determine that pi and pj are incomparable: if a bit

CB
A

E
D

F

(a) Point-based partitions

C

B E

A D F

(b) Corresponding tree

Fig. 1: Point-based partitioning methods [14,23].

is set in the mask of pi but not the mask of pj , and
vice versa, then we can be certain that pj and pi are
preferable to each other on those respective dimensions.

An MT is cheaper than a DT, as only 2 values are
(loaded and) compared, rather than 2d values. Sub-
stituting MTs for DTs has been shown to drastically
improve performance [5, 14, 23]. Section 4.1 briefly re-
views the recursive, point-based approach that intro-
duced MTs in literature, with its limitations. Section 4.2
describes our GPU-friendly static grid tree.

4.1 The case against recursive partitioning

A review of point-based methods Point-based,
recursive partitioning methods induce a quad-tree par-
titioning of the data set and record skyline points as
they are found in a tree. A skyline point (called a pivot)
is discovered and used to split the partition into 2d

sub-partitions. Each sub-partition is then handled re-
cursively. Figure 1a illustrates the partitioning of space
by a set of two-dimensional points (skyline points are
solid, the rest are dominated) and Figure 1b shows the
resultant quad-tree of skyline points. Each tree node
contains one point pi and (except for the root) a bit-
mask that records on which dimensions pi is worse than
its parent. Figure 1b presents the bitmasks graphically.

The tree is built incrementally, point by point. When
processing the next point, pi, the quad-tree that has
so far been built can be used to eliminate DTs for pi.
First, pi builds a new bitmask recording its dimension-
wise relationship to the root of the tree. If all bits are
set, then pi is dominated. Otherwise, only children of
the root with bitmasks that dominate or are equal to
the bitmask of pi need to be visited. For example, con-
sider when point F is added in Figure 1b. It is first
partitioned to the lower-right of root point C. Since all
points to the lower right of C are incomparable to all
those to the upper left of C, F need not be compared to
any point in the subtree rooted at B. The bitmask gen-
erated against E similarly permits skipping the subtree
rooted at D. Since neither C nor E dominated F and
the rest of the tree was skipped, F is in the skyline.
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A deeper tree, therefore, permits skipping more DTs.
If a point pi is to compare to a point pj at depth h in
the quad-tree, it uses h cheap MTs to try and infer in-
comparability before resigning to a DT against pj . Fur-
thermore, the higher the height of a point pj for which
pi infers incomparability, the more points pi can skip.

High divergence Since the point-based methods are
recursively defined, they are poorly suited to the branch-
sensitive GPU architecture. We discuss challenges for
both the tree traversal and the partitioning itself.

Traversal We illustrate the challenge with an example.
Consider two subtrees, L and R, of a quad-tree and
their lowest common ancestor, A. When the points in
the subtree rooted at A were partitioned was the last
time that points in L and points in R were partitioned
using the same boundaries; afterwards, they are sub-
partitioned independently based on their own subset
of points. Points are added incrementally to the tree
(in depth-first manner). Consider when the points in
R (not yet added to the tree) are to compare to the
points in L (which are in the tree). First, a DT with the
root of L is conducted for each point in R, generating
a bitmask. These bitmasks are then used to determine
which branches of L each point of R should traverse.
Because the root of L is chosen independently of R,
the results of all the MTs diverge sporadically. Without
some form of global alignment, this will happen for any
pair of partitions that are not siblings in the quad-tree.

Partitioning Just efficiently partitioning the points is
hard on the GPU. Each partition is sub-partitioned rel-
ative to its own pivot, a skyline point, independent of
all other partitions. Therefore, for each recursive call,
a subset of points must independently select a “bal-
anced,” representative skyline point. The independent
partitions must each do this in a data-parallel fashion
to avoid incurring copious branch divergence, while still
utilising the thousands of physical cores on the GPU.
We will introduce a globally-defined alternative, with
pivots common to all partitions at each level of recur-
sion, that is designed to be data-parallel (Section 4.2).

High dimensions Although quad-tree partitioning
can be effective at reducing DTs, it does not scale well
with dimensionality. Consider the effect of adding an-
other dimension to the example in Figure 1. Each bit-
mask will carry one extra bit of information; so, the
probability of a random MT inferring incomparability
will rise from 1 − 3

4
2 to 1 − 3

4
3. On the other hand, the

branching factor of the quad-tree doubles, drastically
shortening the tree. So, the number of MTs that, on
average, shield any given point from a DT will decrease
from log4 n to log8 n. Also, the number of points in any

p0
p1

p2

p3

Median/Quartile Masks
M0 = 01 Q0 = 10
M1 = 11 Q1 = 00
M2 = 10 Q2 = 11
M3 = 10 Q3 = 10

Fig. 2: Static median/quartile-based partitioning of
data. Solid (dashed) lines denote medians (quartiles).
The x-axis (y-axis) is the first (second) dimension.

given subtree decreases; so, the value of skipping sub-
trees with MTs decreases. In the ultimate case, a tree
with n nodes consists of one root and n − 1 children:
the average number of masks per point is less than one.

Note that the poor scalability with respect to di-
mensionality has been noted before [14]; the proposed
(although not investigated) solution was to ignore a
subset of dimensions—and, ergo, information. Our static
grid assigns a constant number of masks to every point,
leading to fewer DTs in higher dimensions (Section 6.2.2).

4.2 A static grid alternative

The recursive, point-based methods do not scale with
(i.e., fail to capture the increasing information with) di-
mensionality and lead to heavy, GPU-unfriendly branch
divergence. We introduce a static grid that avoids these
issues, yet retains—even expands—the value of MTs.

We first give an overview of the partitioning mecha-
nism (Section 4.2.1). We then describe how to statically
generate bitmasks from the partitioning (Section 4.2.2)
and how to use the the bitmasks for MTs (Section 4.2.3).

4.2.1 Median/Quartile as a partitioning scheme

Our static grid is conceptually simple: we split each di-
mension based on the quartiles in the dataset. We de-
fine three global pivots, one corresponding to each quar-
tile boundary. The middle quartile, the median of the
dataset, provides a coarser resolution. For each point
pi, one can define a bitmask relative to the median for
a coarse-grain perspective, and one bitmask relative to
either the first or third quartile (whichever is relevant),
to provide a finer-grain perspective. Every point has ex-
actly two bitmasks (and two possible MTs), irrespective
of input parametres. Importantly, all partition bound-
aries are defined relative to three global pivots, so the
boundaries of partitions are aligned with each other.

Conceptually, this is similar to the quad-tree de-
composition, albeit with virtual pivots. All points are
partitioned at the first level by their relationship to the
median of the dataset. At the second level of recursion,
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all points are partitioned by their relationship to the
first/third quartiles. This produces a tree with branch-
ing factor 2d, virtual points in the inner nodes, and sets
of points in the leaves. The use of virtual median piv-
ots has been independently validated for recursive par-
titioning [22]; using non-recursive (i.e., static) splitting
points at all second-level vertices is the distinct differ-
ence that makes our scheme branch more predictably.

Indeed, it is worth questioning whether a third level
of resolution (octiles) would be worthwhile. Naturally,
this depends on both cardinality and dimensionality.
Two layers of resolution already provide 4d distinct par-
titions. At d = 10, this is enough to give a unique par-
tition to one million points (assuming a perfect par-
titioning). A third level partitioning in 10 dimensions
would produce 810, or slightly more than a billion, dis-
tinct partitions. Current GPU memory is well shy of the
40GB that a 10d dataset with a point for every octile-
level partition would occupy. We investigate the quality
of the partitioning in the experiments of Section 7.3.

4.2.2 Definition of masks

Section 4.1 described the challenges to recursively defin-
ing bitmasks on the GPU. Here, we describe how bit-
masks can be assigned using the static grid. Let quarti[δ]
denote the i’th quartile for the δ’th dimension; quart2
is, of course, the median of the dataset. Figure 2 shows
an example, with the space partitioning on the left (sky-
line points are again solid; the rest are dominated) and
the masks for select points on the right. The quartiles
are based on the dataset, e.g., quart1[1] = p2[1] and
quart2[1] = p1[1]. The quartiles are virtual: every di-
mensional value of a quartile corresponds to a data
point’s value, but no quarti is likely to be equal on
all dimensions to any data point.

We denote by Mi the median-level-resolution bit-
mask for point pi; we denote by Qi point pi’s quartile-
level-resolution bitmask. For dimension δ, Mi[δ] is set
iff pi is larger than or equal to the median on dimension
δ. Qi is similarly defined. Formally, we have:

Mi[δ] = 0, Qi[δ] = 0 ⇐⇒ pi[δ] < quart1[δ]
Mi[δ] = 0, Qi[δ] = 1 ⇐⇒ pi[δ] ∈ [quart1[δ], quart2[δ])
Mi[δ] = 1, Qi[δ] = 0 ⇐⇒ pi[δ] ∈ [quart2[δ], quart3[δ])
Mi[δ] = 1, Qi[δ] = 1 ⇐⇒ pi[δ] ≥ quart3[δ]

Consider Figure 2 again. The solid lines denote the
medians and the dashed lines denote the quartiles. The
median-level masks are set depending on to which side
of the solid lines a point lays and the quartile-level

masks are set depending on to which side of the rel-
evant dashed line a point lays. Specifically, M0 = 01
because p0 is less than the x-median and greater than
the y-median. By contrast, M2 = M3 = 10, because
p2 and p3 are greater than the x-median, but less than
the y-median. However, they differ on quartile masks,
where Q2 = 11 and Q3 = 10. Finally, Q0 = 10, M1 = 11
and Q1 = 00.

4.2.3 Statically-defined MT-based incomparability

Given the bitmasks defined in the previous subsection,
we can define a series of non-dominance implications
from their order (i.e., number of bits set) and bitwise re-
lationships. We define these equations at both levels of
resolution. The finer, quartile-level resolution assumes
knowledge of median-level resolution MTs to elegantly
simplify the equations.

Median-level resolution Let pi, pj be points with
median relationships Mi, Mj . Also, let |Mi| denote the
order of Mi. Often, inspecting Mi and Mj is sufficient
to reveal that pj 6≺ pi. We define three rules for this
purpose. The rules rely on transitivity with respect to
the median: if Mi[δ] < Mj [δ], then pi[δ] < quart2[δ] ≤
pj [δ] and therefore pj 6≺ pi. Note that the reverse is not
true: pi[δ] < pj [δ] 6=⇒ Mi[δ] < Mj [δ], because both
pi[δ], pj [δ] could be less/greater than the median.

(Mj | Mi) > Mi =⇒ pj 6≺ pi. (1)
|Mi| < |Mj | =⇒ pj 6≺ pi. (2)

|Mi| = |Mj |, Mi 6= Mj =⇒ pj ≺� pi. (3)

Equation 1 The first equation expresses transitivity
simultaneously for all bits. It checks whether Mj has
any bits set that are not also set in Mi. If so, then ∃δ s.t.
pi[δ] < pj [δ], and, consequently, pj 6≺ pi. In Figure 2,
we deduce that p1 6≺ p0 from the median masks alone.
Since M0 = 01 and M1 = 11, the first bit is set in M1,
not in M0, and M1 | M0 = 11 > M0 = 01. So, the
antecedent of the rule is true, and we have p1 6≺ p0.

Equation 2 Equation 2 is a special case of Equation 1.
If Mj has more 1’s set than does Mi, then it necessarily
contains one that is not set in Mi. In such a case, Equa-
tion 1 is trivially true. Considering Figure 2 again, we
could actually determine p1 6≺ p0 from this easier spe-
cial case: |M0| = 1 < |M1| = 2.

Equation 3 Finally, Equation 3 identifies another spe-
cial case, when |Mi| = |Mj |, of Equation 1. If Mi, Mj

have the same order, then the only condition under
which all bits set in Mj are also set in Mi is if the masks
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are identical. If the masks are not identical, then nei-
ther pi ≺ pj nor pj ≺ pi, because both necessarily have
bits set that the other does not. This rule is exemplified
between p2 and p0 in Figure 2. Both points are parti-
tioned to the same level (|M0| = |M2| = 1); however,
they do not appear in the same partition (M0 = 01, but
M2 = 10). Therefore, the points and bitmasks are both
incomparable to each other (M0 ≺� M2 and p0 ≺� p2).
Quartile-level resolution If Mi, Mj do not deter-
mine that pj 6≺ pi (i.e., the precedent does not hold in
Equations 1-3), quartile-level masks, Qi, Qj , may suf-
fice. Here, we have two cases: Equation 4 maps to a false
precedent in Equation 1 and Equation 5, in Equation 3.

Mj � Mi,
((

(Mj | ∼Mi) & Qj

)
| Qi

)
> Qi

=⇒ pj 6≺ pi (4)
Mi = Mj ,

(
Qj | Qi

)
> Qi =⇒ pj 6≺ pi (5)

Equation 4 Equation 4 resembles Equation 1. The
main difference is that some bits of Qj are cleared first.
This incorporates knowledge from the median-level MT,
that Mj � Mi. (Without the condition on the median-
level MT, the equation is incorrect.) The expression
Mj | ∼Mi yields a result with bit δ set iff Mi[δ] =
Mj [δ], because Mj � Mi enforces that Mj [δ] ≤ Mi[δ].
In other words, Mj | ∼Mi indicates on which dimen-
sions pi and pj lay to the same side of the median.
These are the dimensions unresolved by the median-
level masks (the others indicate pj < pi). So, the expres-
sion (Mj | ∼Mi) & Qj selects exactly those bits that
were unresolved by median-level masks and for which
pj is greater than the median. Should pi be less than
the median on any of these dimensions, then pj 6≺ pi.

Equation 4 is illustrated in Figure 2 to determine
that p2 6≺ p1. Here, M2 ≺ M1. Specifically, p2 is better
than p1 on the second dimension and equal on the first
dimension (w.r.t. relationship to the median). Thus, we
get M2 | ∼M1 = 10. However, the quartile masks reveal
that 10 & Q2 = 10, which contains a bit (the first) that
is not in Q1. Hence, the quartile-level masks permit
skipping a DT that otherwise was otherwise necessary.
Equation 5 Equation 5 is a special case of Equation 4,
corresponding to when the median-level masks are equal
(as in Equation 3). Then, Mj | ∼Mi = [1]d, the iden-
tity mask, and so (Mj | ∼Mi) & Qj = Qj . The me-
dian masks in this case provide no information for the
quartile-level test, thus do not appear in the equation.

This last equation is illustrated in Figure 2 with p2
and p3, for which M2 = M3 = 10. Since both are in
the same median-level partition, their relationship is
unknown. We use the full quartile-level masks to deter-
mine that p2 6≺ p3, since Q2 | Q3 = 11 | 10 = 11 > Q3.

Algorithm 1 SkyAlign: P −→ SKY(P )
1: τ ← minp∈P maxi∈[0,d) p[i]
2: P ← {p ∈ P |∃i ∈ [0, d) : p[i] ≤ τ}
3: for all dimensions δ ∈ [0, d) do
4: Sort P by dimension δ
5: quarti[δ]← P [bi ∗ |P |/4c][δ], i ∈ {1, 2, 3}
6: for all points pi ∈ P (in parallel) do
7: for all dimensions δ ∈ [0, d) do
8: Mi[δ]← (pi[δ] > quart2[δ])
9: Qi[δ]← (pi[δ] > (Mi[δ]?quart3[δ] : quart1[δ]))

10: Sort P by 〈|M|, M〉
11: for all levels l ∈ [0, d) do
12: Record start index of all nonempty partitions
13: for all points pi ∈ P (in parallel) do
14: if |Mi| > l then
15: for all M : |M| = l ∧ (M | Mi) = Mi do
16: for all points pj ∈ P, Mj = M do
17: if

((
(Mj | ∼Mi) & Qj

)
| Qi

)
> Qi then

18: if pj ≺distinct pi then
19: Mark pi dominated; terminate thread
20: else
21: for all points pj ∈ P, Mj = Mi do
22: if

(
Qj | Qi

)
= Qi then

23: if pj ≺ pi then
24: Mark pi dominated; terminate thread
25: Remove dominated points from P
26: SKY(P )← SKY(P ) ∪ {pi ∈ P : |Mi| = l}
27: Return SKY(P )

5 The SkyAlign algorithm

In this section, we introduce SkyAlign (Algorithm 1),
a work-efficient GPU skyline algorithm that uses static
partitioning (Section 4). The key algorithmic idea in
SkyAlign is the manner in which we introduce order.
Points are physically sorted by grid cell and threads
are mapped onto that sorted layout. The actual com-
putation, however, is loosely ordered with d carefully-
placed synchronisation points. This use of order simul-
taneously achieves good spatial locality, homogeneity
within warps, and independence among threads.

At a high level, SkyAlign consists of d iterations. In
the l’th iteration, remaining points are compared, each
by its own thread, to all points with order l, using MTs
and DTs as necessary. At the end of each iteration, we
remove dominated points from consideration and add
non-dominated points with order l to the solution. We
repack non-dominated points with order > l to improve
locality and we repack warps, since some threads may
have determined their points to be dominated.

We detail Algorithm 1 in the following sequence: the
initialisation (Section 5.1), the data layout and alloca-
tion of work to threads and warps (Section 5.2), how
Equations 1-5 are used to improve work-efficiency (Sec-
tion 5.3), and the thread-level control flow (Section 5.4).
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5.1 GPU-friendly initialization

Our initialisation, once the data is resident in GPU
memory,6 consists of a pre-filter, the assignment of bit-
masks (i.e., grid cells), and sorting of the data points.

Pre-filter The pre-filter (Lines 1–2 of Algorithm 1)
eliminates points that are easy to identify as not in
the skyline prior to the calculation of quartiles and
other sorting operations. A similar idea was used in the
Hybrid multi-core algorithm [5]. The technique in [5] is
to precede the main algorithm by first identifying the
β points with the smallest sum of attributes, and then
comparing every other point to these β points. For the
GPU, however, those β points are difficult to identify
without sorting; the technique in Hybrid [5] uses prior-
ity queues (not available on a GPU).

Instead, SkyAlign uses a parallel reduction to iden-
tify a threshold, τ , as the min of max values. This
threshold has already been shown to be effective at
eliminating many comparisons [1]. However, we use the
threshold differently here: in [1], τ is used to halt exe-
cution; we instead employ it before execution to remove
some non-skyline points from the input and minimize
the costs of subsequent sorting.

Recall the example in Table 2. Here, we use the
parallel reduction to identify a threshold of τ = 2, p1’s
largest value and the smallest largest value in the data.
Next, each thread is responsible for one point, checking
whether it has any values less than the threshold (or
has all values equal to the threshold). Here, p3 can be
eliminated because it has no value less than τ . Notice
that, although p2 is also dominated by p1, it is not
caught by the prefilter.

Mask assignment Section 4.2.2 described how masks
are assigned to each point, given the quartiles of the
dataset for each dimension (Lines 6-9). To compute
quartiles, we use the extremely parallel built-in GPU
radix sort on each dimension independently (Lines 3-
5). This is not so expensive: each sort only considers
the n floats for the relevant dimension. In some cases,
the (approximate) quartiles may even be known, but
SkyAlign does not make this assumption.

Data sorting Our final initialization step, Line 10,
sorts the data points to improve subsequent access pat-
terns. We first sort the ids of the points by integer repre-
sentation of their median-level bitmasks. We then sort
these bitmasks by their order (i.e., |M|). Finally, we re-
organize the data to match this two-level sort, which
also matches the control flow described later.

6 Either via PCIe transfer from CPU (host) memory or be-
cause the previous GPU operator in the query plan completes.

5.2 Data Layout and Thread Allocations

SkyAlign uses three elements per data point, the at-
tribute values, a median-level mask, and a quartile-level
mask. Here, we describe how we represent these ele-
ments and how threads map onto them.

The data itself is stored in a long one-dimensional
array of the form [p[0][0], p[0][1], . . . , p[n − 1][d − 1]] with
padding after each point to fit cache lines. This for-
mat best supports coalesced reads, because this data is
only used to conduct ad-hoc DTs, so is accessed ran-
domly: these are the reads SkyAlign is designed to
avoid. The quartile masks are stored in an unpadded
array of length n, sorted in the same order as the data
points: the quartile mask for P [i] is at the i’th position
of the quartile mask array. The quartile mask array is
read sequentially, so these cache lines get high reuse.

As there are fewer median-level masks, we represent
them with two arrays. One stores at position i the i’th
distinct median-level bitmask that is used. The other
array contains the start index in the quartile mask array
of the first incidence of the i’th median-level bitmask
(i.e., a prefix sum). This permits indexing directly into
the quartile mask array when a median-level MT fails.

All three data structures are repacked (i.e., values
are moved left to occupy space vacated by points that
have been dominated) at each synchronisation point in
order to maintain contiguity and alignment.

The threads are allocated in order. Thread ti works
on point P [i]. Because the data points are sorted by
median-level partition, threads are similarly sorted. In
other words, the threads in any given warp work on a
small set of partitions, so have minimised divergence
with respect to median-level MTs (Line 15).

5.3 Work-efficiency

The work-efficiency of SkyAlign comes from the static
partitioning of Section 4. The five equations introduced
in that section are used to substitute DTs for MTs.

We employ Equation 2 first, on Lines 10-11 and 26.
Due to the iteration order, a thread processing point pi

will only consider points pj such that |Mi| ≥ |Mj |. Once
pi has finished processing all points with order ≤ Mi,
it can be progressively added7 to the solution: no point
with higher order can possibly dominate pi.

On Line 14, we branch on the order of the point, but
at most 1 warp diverges at this line on any iteration.
Points with order > l branch into Lines 15-19, where

7 Progressive skyline algorithms [17] can output solution
points as they are discovered, in contrast to an algorithm that
must fully complete before any solution point can be confirmed.
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w0

p0 p6

w1

p5 p4

w2

p3 p2

w3

p1 −

M 01 10 11

Start 0 3 6

Q 10 11 01 01 11 10 00
t0 D
t1 D D D†
t2 D
t6 D . . .

. . .
t6

t3 D
t4 D
t5 D D†
t6 D†

Fig. 3: SkyAlign’s thread flow for the data in Figure 2.
The three arrays of the quad-tree are represented by M
(median masks), Start (start indexes), and Q (quartile
masks). The lines trace which values are read by each of
the 8 threads. The threads (t0-t7) are assigned to warps
from left to right. D indicates a DT and †, dominance.

they conduct both median-level and (possibly) quartile-
level MTs. Fewer than 2d warps diverge at Line 15,
since there are at most 2d − 1 median-level partition
boundaries. The median-level MT occurs on Line 16,
where a thread processing point pi only considers other
median masks for which Equation 1 does not hold. If
this MT fails, we then load and iterate the quartile-
level masks and use Equation 4 on Line 18 to ascertain
which points will require a DT. Conversely, if at Line 14
a thread branches towards order = l (note that < l is
impossible), then Lines 21-24 are executed. In this case,
Equation 3, used on Line 21, permits skipping median-
level tests by only comparing a point pi to other points
pj with Mi = Mj . The quartile-level MT on Line 22
invokes Equation 5 to decide if a DT is necessary.

5.4 Thread-level control flow

Here, we combine the previous subsections with our
running example from Figure 2. Figure 3 illustrates, for
the first (and, in this case, only) iteration, the control
flow of each thread through our data structures.

The seven points are sorted by median-level mask:
masks with 1 bit set appear first; the mask with 2 bits
set appears afterwards. There is no sort with respect
to quartile-level mask; however, the quartile-mask ar-
ray is ordered the same as the list of points. Thread ti

is responsible for point P [i]. Threads are grouped into
warps (of size 2 for illustrative purposes). For example,
thread t1 from warp w0 processes point p[1] = p6. The

path of a thread through the data structures is traced
with a line. All threads run concurrently.8

Threads t0–t5 process points with order l = 1, the
value of the current iteration. Thus, they index directly
into and iterate the three quartile masks for their own
point’s partition (Lines 21–24). When a quartile MT
fails, for example in all cases for t1, a DT is conducted,
denoted by a D under the quartile mask. When a point
is dominated, the thread dies (denoted by a dagger). If
thread ti reaches the end of its point’s partition without
discovering dominance, such as with t0, t2, t3, t4, point
P [i] will be added to the solution.

Thread t6, on the other hand, works on point p1
with order 2. So, it iterates all the median-level masks
with order 1 (Lines 15–19). For each median-level MT
that fails (in this case, both), the thread iterates the
corresponding set of quartile masks. When the quartile-
level MT fails, such as at position 0 and 3, a distinct-
value DT (≺distinct) is conducted. Were this thread to
reach the end of the iteration without being dominated,
it would survive to the next iteration. However, p1 here
is dominated on its second DT, against p4.

Note that only one warp, w1, diverges on the median-
level MT. This is the only warp that contains points
of multiple median-level grid cells. In general, because
there are at most 2d − 1 median-level grid cell bound-
aries, at most 2d − 1 warps can contain threads that
diverge at this line. This is in sharp contrast to point-
based partitioning, which would branch sporadically.
Also note that whenever multiple (step-locked) threads
need to access data, they always access the same data,
therefore sharing the same (read-only) cache line.

6 Experimental evaluation on the GPU

In this section, we evaluate SkyAlign relative to state-
of-the-art GPU [2], multi-core [5], and sequential [14]
algorithms. Section 6.1 describes the setup of the exper-
iments; Section 6.2 presents and discusses the results.
Our findings are summarised in Section 6.3.

6.1 Setup and configuration

Software We use publicly available [5] C++ imple-
mentations of sequential BSkyTree [14] and multicore
Hybrid [5] CPU algorithms.9 These algorithms have
both been recently shown to be state-of-the-art by their
respective authors for their respective platforms. We

8 Strictly speaking, some warps run concurrently while others
queue, and the order in which they are queued is unpredictable.

9 https://github.com/sean-chester/SkyBench

https://github.com/sean-chester/SkyBench


SkyAlign: A Portable, Work-Efficient Skyline Algorithm for Multicore and GPU Architectures 11

1 2 4 6 8
0

20
40
60
80

Cardinality, ·106

T
im

e
(s

)

4 8 12 16
0

20
40
60
80

Dimensionality

Independent

GGS Original GGS

Fig. 4: Unoptimised vs. optimised GGS implementations.

use our own implementation of GGS [2], the state-of-the-
art GPU algorithm; however, we optimise it (described
below) to utilize features in our newer graphics card.
We implement our proposed algorithm, SkyAlign (Sec-
tion 5), in CUDA 7. Our implementation of SkyAlign
and our optimised version of GGS are unchanged from [3].

GPU Optimizations We optimise GGS by unrolling
loops (using C++ templates) to make better use of reg-
isters and to increase instruction-level parallelism. The
original implementation tiled data into shared memory,
but we instead load it through lower-latency, read-only
texture cache (which was not available on the graphics
card used in [2]). Finally, we augment the GGS algorithm
with distinct-value DTs (≺distinct), since the BSkyTree,
Hybrid, and SkyAlign implementations all take advan-
tage of distinctness: In GGS, points with different Man-
hattan scores are certainly distinct; comparing them
can use the twice-cheaper distinct-value DT. Figure 4
shows the speed-up provided by these optimisations.
The same optimisations are present in SkyAlign.

Datasets To measure trends, we use synthetic data,
generated with the standard skyline dataset genera-
tor [4]. The datasets have uniformly-distributed dimen-
sions which are correlated (C), independent (I), or an-
ticorrelated (A). Grids, which SkyAlign uses, are often
susceptible to data skew; so, we also create pareto (P)
datasets, wherein each attribute is independent from
the others and distributed according to a Pareto dis-
tribution with xm = 1 and α = 1, by generating uni-
form random numbers r ∈ [0, 1] and applying an inverse
transform of x = (1−r)−1 (the inverse of the cumula-
tive distribution function). This produces a heavy skew
towards lower (i.e., better) values. Once generated, we
normalise the data to the range [0, 1]. For all datasets,
we vary dimensionality d ∈ {4, 6, . . . , 16} and cardinal-
ity n ∈ { 1

2 , 1, 2, 4, 6, 8}·106. Following literature [5, 14],
we assume default values of d = 12 and n = 1·106.

Environment All experiments in this section are run
on a quad core Intel i7-3770 at 3.40GHz, with 16GB of
RAM, running Fedora 21. To differentiate this machine
from those in Section 7, we call it Desktop. Desktop
favours the sequential algorithm, BSkyTree, given the
high clock frequency. Section 7 shows the performance
of Hybrid with more, but slower, cores. The GPU al-
gorithms use a dedicated Nvidia GTX Titan graphics
card. Timings are measured with C++ libraries inside the
software and do not include reading input files into CPU
memory, but do include transfer times from the CPU
host to the GPU device. The GPU implementations are
compiled using the nvcc 7.0.17 compiler; CPU imple-
mentations are compiled using g++ 4.9.2 with the -O3
flag. Hybrid is run with eight (hyper-threaded) threads.

6.2 Results and discussion

We conduct four experiments in this section, the first
two comparing the performance of the four algorithms
to each other and the next two investigating SkyAlign
in more depth. Section 6.2.1 evaluates the relative run
time performance and scalability of the algorithms, and
Section 6.2.2 contrasts the algorithms in terms of DTs
and work conducted. Section 6.2.3 disables features of
SkyAlign in order to isolate and independently study
the effect of each of our algorithmic contributions. Fi-
nally, Section 6.2.4 examines SkyAlign by iteration, il-
lustrating which iterations most impact execution time
and which iterations prune the most skyline points.

6.2.1 Run-time performance

Figure 5 shows run times in milliseconds on a logarith-
mic scale for each algorithm on the four distributions
(increasing correlation from top to bottom).
Cardinality The subfigures on the left show trends
with respect to increasing cardinality (d = 12). We note
first that GGS is slower than BSkyTree on most work-
loads and only marginally faster on the exceptions (low
cardinality, independent and pareto). It is always much
slower than Hybrid. This justifies the need for this
research: state-of-the-art GPU skyline algorithms are
simply too slow. By contrast, our proposed SkyAlign
consistently computes the skyline fastest, the only ex-
ceptions being the easier low cardinality, correlated data,
where only GGS fails to terminate within 100 ms.

We observe a smaller improvement margin for Hybrid
relative to BSkyTree than reported in [5], but Desktop
has fewer and faster cores than the machine used in [5].

All methods exhibit the same basic trend of increas-
ing running times with respect to increases in cardi-
nality, irrespective of distribution. GGS has the highest
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Fig. 5: Execution time (ms) of Hybrid, GGS, BSkyTree,
and SkyAlign as a function of n (left) and d (right).

rate of growth. This is an unsurprising result: previ-
ous literature (c.f., [4,14,23]) has noted this distinction
between partition-based and non-partition-based (i.e,
sort-based) methods, and GGS is the only method here
that fits into the latter class. Sort-based methods typ-
ically do more work per point, so suffer worse when
more points must be processed. The skew of the pareto
distribution, relative to the independent data, has a
minor effect that we attribute to the randomness with
which the data was generated. The fixed-cost prefilter
used by Hybrid (and studied more in Section 7.3) re-
moves 60 % of the independent data points, but only
58 % of those in the pareto distribution, leaving the
algorithm with more work to complete. The GPU algo-
rithms use a different filter which provides a slight rela-
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Fig. 6: DTs conducted by each algorithm

tive improvement on the pareto data. Evidently, basing
the SkyAlign grid on the quartiles of the dataset is
sufficient to overcome the data skew.

Dimensionality The subfigures on the right show
trends with respect to increasing dimensionality (n =
106). Unlike with cardinality, not all methods have the
same trends: SkyAlign behaves differently on anticor-
related data and generally has a slow growth rate. This
results from our static, rather than recursive, partition-
ing. We elaborate on this in the next experiment.

Comparing results on the independent and pareto
distributions again, we see an inconsistent effect of data
skew for datasets of different dimensionalities. This sup-
ports the conclusion that the variation results from ran-
domness in the data. Finally, for all distributions, nei-
ther GPU algorithm is suitable for very low dimensional
(i.e., d < 6) data: the computation is not challenging
enough to provide the opportunity to amortise the cost
of transferring the data to the GPU. With one million
correlated points, increases in dimensionality are still
insufficient to increase the workload to beyond tens of
milliseconds. As we show in Section 7.2, the efficacy
of our pre-filters are predominantly responsible for the
fast run times; so, we exclude correlated data from the
more detailed analysis in the rest of this section. In con-
trast, SkyAlign achieves nearly an order of magnitude
improvement over the next competitor for high dimen-
sional, anticorrelated data.
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6.2.2 Work-efficiency

Dominance tests Figure 6 plots the number of DTs,
normalised per point, conducted by each algorithm as
a function of n and d for anticorrelated and indepen-
dent distributions. We omit correlated and pareto dis-
tributed data from the remainder of this section, since
the former is handled very fast by all algorithms and
the latter exhibit trends that are very similar to those
of the independent data. The slow performance of high-
throughput GGS observed in Section 6.2.1 is clearly ex-
plained by the plots: GGS consistently performs signif-
icantly more DTs, a difference of nearly five orders of
magnitude relative to SkyAlign in the most extreme
case (anticorrelated, d = 16). Without any mechanism
to avoid DTs, other than Manhattan Norm sort, and
a very large skyline that limits the avoidance of DTs
through transitivity, GGS degrades to quadratic perfor-
mance. The extreme parallelism on the GPU counters
much, but not enough, of this difference in DTs to make
GGS nearly competitive with sequential BSkyTree. How-
ever, compared to the other parallel algorithms, which
have much better work-efficiency, GGS is uncompetitive.

In contrast, lower-throughput SkyAlign uses ≤ 5 %
of the fewest DTs for d ≥ 10, often fewer even than the
sequential algorithm. This is astounding, since parallel
algorithms, as Hybrid does here, usually trade work-
efficiency for more parallelism. These plots enforce that,
while compute throughput is crucial for parallel (and
especially GPU) algorithms, so too is work-efficiency.

The trends with respect to cardinality (on the left)
show a convergence of SkyAlign towards Hybrid and
BSkyTree. The recursively partitioned algorithms do
not require many additional DTs per point when the
number of points increases, because the resultant quad-
tree simply becomes deeper; more meta-data (in terms
of MTs) is available for avoiding DTs among the new
points. The growth rate of DTs for SkyAlign is slow,
since quartile-level partitioning is still sufficient to give
nearly every point its own quartile-level cell.

It is worth comparing the cardinality plots for in-
dependent data in Figures 5 and 6. The consistency
among algorithms in the shape of their trend lines per-
mits really observing the effect of the parallel architec-
tures. Despite such a significant gap in DTs between GGS
and BSkyTree, we observe roughly equal performance:
the impact of high-throughput GPU computing is re-
ally massive. On the other hand, the work-efficient algo-
rithms have roughly the same performance with respect
to DTs; we see the expected several factors improve-
ment for multicore Hybrid over BSkyTree, and the or-
der of magnitude improvement, despite the lower com-
pute throughput, for GPU SkyAlign over BSkyTree.
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Fig. 7: Work-efficiency of each algorithm

Work A curious discrepancy is observable between
the DTs in the dimensionality plots in Figure 6 and the
execution times in Figure 5. For SkyAlign, the number
of DTs per point decreases with increasing d; yet, the
running time continues to climb (slowly). The reason
is that the standard counting of DTs ignores the work
done in evaluating MTs. The plots in Figure 7 of work
(Definition 3), which also constantly climb at a slow
rate, better match the observed performance, so are
perhaps a better measure of performance than DTs.

Here we observe that GGS is not as work-inefficient,
and hence slow, as the DT plots imply, because it does
no MTs. Also the recursively-partitioned methods have
very similar work to SkyAlign for d ≥ 10; SkyAlign
manages to avoid DTs that BSkyTree and Hybrid can-
not, but it does so with many MTs. As is more intuitive,
we see that the sequential algorithm, by this definition
of work, is approximately as work-efficient as SkyAlign.

In summary, we expect low d to advantage recur-
sive partitioning, where it is nonetheless outperformed
on account of parallelism. Conversely, our static grid
partitioning gains information and becomes relatively
more work-efficient with increasing d, and so, with mas-
sive parallelism, clearly outperforms the competition.

6.2.3 SkyAlign variants

We study a few algorithmic choices in SkyAlign that
are perhaps surprising relative to typical GPU algo-
rithms. Synchronisation often limits parallelism; so, to
evaluate our use of it, we run a version, NoSync, where
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Fig. 8: Run-time of SkyAlign with features disabled

Line 11 is removed from Algorithm 1. Similarly, MTs
create divergence within warps. We study a variant that
only uses median-level partitioning (NoQuart) to re-
move quartile-level MT divergence. We also study a
variant, Padded, wherein every median-level partition
is padded with data to align the partition boundaries
with warp boundaries. Padded thus completely avoids
median-level MT divergence. Figure 8 plots the vari-
ants. The slower a variant is relative to SkyAlign, the
more effective is its disabled feature.

The most striking of the variants is NoSync, which
has a profound impact on low (anticorrelated) to mod-
erate (independent) dimensionality. Recall, the value of
the synchronisation is to improve data access patterns
by recompressing the data structures to exclude data
that has already been eliminated and to improve re-
source utilisation by allocating new work to otherwise
retired threads. The number of synchronisations is the
same as the dimensionality, so cost clearly grows with d.
Also, as d increases, so, too, does the size of the skyline;
so, the number of points being removed between syn-
chronisation points decreases. This presents less value
in the synchronisation. Thus, we see decreasing payoff
with increasing dimensionality.

On the independent data, however, the trend is de-
layed. Note that utilisation can only be improved if
there is enough work to utilise the resources. In low-
dimensional, independent data, much of the data is
pruned early. If there are not at least 28 672 points
left,10 we cannot fill enough threads anyway, and so
10 This is the number of concurrent threads on our GPU.

the value of repacking warps is nullified. It is after 8 di-
mensions where the skyline becomes large enough that
the graphics card can be utilised well enough to really
take advantage of the synchronisations.

With respect to increasing cardinality, we always
see added value in synchronisation. More points lead to
larger skylines and working sets, so better utilisation.

The effect of the quartile-level MTs is notable and
consistent. The NoQuart variant always performs worse
than SkyAlign, and more so with increases in either
input parameter, d or n. This ratifies our observations
on work-efficiency: MTs are much cheaper than DTs,
and SkyAlign trades the latter for the former.

Our final variant, Padded, is quite interesting. It
generally outperforms SkyAlign by a small margin by
achieving higher compute throughput from less diver-
gence. However, the performance degrades at higher di-
mensions. With more dimensions, the same number of
points are scattered over more median-level partitions.
Consequently, each partition has fewer points and more
padding. Thus, the compute throughput decreases af-
ter a critical point, because the gains from homogeneous
work are overcome by the percentage of resources idled
by each warp. Many (up to 32×) more warps are ulti-
mately launched, resulting in a slow-down. We prefer
the consistency and reliability of SkyAlign. Nonethe-
less, it is interesting to observe the trade-off in two ele-
ments of GPU throughput: avoiding branch divergence
versus busying all the resources with meaningful work.

6.2.4 Per-iteration performance

Figure 9 shows a break-down of SkyAlign per each of
the ≤ d iterations. It also shows “iteration 0,” which in-
cludes transfer to device, the pre-filter, and median/par-
tition calculations. The dotted lines depict, on the left
y-axis, the number of points pruned in each iteration;
the dashed lines depict, on the right y-axis, the execu-
tion time of each iteration. We show independent and
anticorrelated data in the plots. There are three plots,
one each for low (d = 6), default (d = 12), and high
(d = 16) dimensionality.

The 12d plot illustrates the difference between the
distributions quite nicely. For independent data, the
number of points pruned spikes quickly in the first cou-
ple of iterations. Thereafter follows a spike in execution
time over the next few iterations (#3-5) where the ma-
jority of remaining points are verified as members of the
solution. Conversely, for the anticorrelated data, execu-
tion time spikes first, right in the middle where the most
(i.e.,

(
d/2

d

)
) partitions are. The spike in points pruned

follows thereafter (iterations #6-8).
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Fig. 9: Run-time, pruning of SkyAlign, by iteration.

This effect explains the success on correlated and
independent data of prioritizing points with low Man-
hattan Norm [2, 8], Z-order [15], and our bitmask car-
dinality. All these heuristics lead to comparing first
against points that are in our earlier iterations, which
quickly reduces input size and improves algorithmic
performance. However, these results also suggest ex-
ploring alternatives for anticorrelated data, where the
majority of point pruning occurs after the majority of
the running time. Although the MTs make the process-
ing time faster, alternatives could reduce the input size
enough to make for less processing overall.

The independent data is particularly interesting. On
low dimensionality, we see that the pre-filter is espe-
cially effective. More than half of the points that are
eventually pruned are pruned by the pre-filter (#0).
The pre-filter is also very fast, always taking < 10 ms to
compute on any workload. This behaviour is especially
dramatic for the correlated data (not shown), where the
pre-filter nearly solves the skyline.

On the other end of the scale, the independent data
behaves quite unusually in high dimensions. The points
pruned have a bimodal distribution, exhibiting charac-
teristics of both independent and anticorrelated data.
Still, true to independent data, there is a spike in points
pruned in the first couple of iterations, but it is only half

the amplitude as on the default dimensionality. There-
after, as before, follows the spike in execution time.
However, this is also followed by a second spike in points
pruned, which is nearly as dramatic as the first. The
second spike, which follows the majority processes, is
reflective of anticorrelated data.

Lastly, recall the performance of NoSync in Figure 8.
For low d, the synchronisation was especially effective.
Considering the 6d plot in Figure 9, we see that a lot of
points, both for anticorrelated and independent data,
are pruned in the early iterations. So, it is intuitive
that repacking the data and warps to physically remove
these pruned points would have a dramatic impact on
the access patterns of the subsequent iterations. For
the 12d data, on the other hand, the distributions be-
have quite differently already. The independent data
still prunes many points early and thus benefits well
from the synchronisation; however, the anticorrelated
data sees less impact, having not pruned many points
until the mid- to late-iterations. Finally, at high dimen-
sions (d = 16), both distributions prune a large percent-
age of their points after the majority of processing time
has completed; so, the synchronisation is less impactful.

6.3 Summary

To summarise our findings, measuring work is a more
accurate reflection of running times than is counting
DTs. The work of recursively-partitioned methods scales
well with n, but not d. The work of our grid-partitioned
SkyAlign scales very well with d and reasonably well
with n, even in the presence of data skew. Consequently,
SkyAlign, being the most parallel of the work-efficient
methods, is the most run-time efficient. Given its poor
work-efficiency, the state-of-the-art GPU competitor,
GGS, struggles even to match sequential computation.

Looking closer, synchronisation and branch diver-
gence, generally ill-advised for GPU algorithms, pay off
for SkyAlign because of the resultant work-efficiency.
The only promising alternative, that of padding parti-
tions to fit the warp size, scales poorly with d. Looking
abstractly at when points are pruned, we see that in-
dependently distributed points are generally pruned by
others that are better than the median across most di-
mensions, whereas anticorrelated points are generally
pruned by others that are worse than the median on
more than half the dimensions. As d increases, the dis-
tinction between the distributions blurs, and the inde-
pendent data exhibits hybrid characteristics.
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7 Portability of the GPU algorithms

We have stated that work-efficient parallel algorithms
should not do much more work than a single-threaded
algorithm. Figure 7 shows that this is true of SkyAlign
and Hybrid. Although our intention has been to inves-
tigate whether work-efficiency helps on a throughput-
hungry architecture such as the GPU, it is reasonable
to ask whether these observations hold when the GPU
algorithms are ported to multicore CPUs.

We argued in Section 4.1 that the existing CPU al-
gorithms are ill-suited for the GPU. In particular, the
state-of-the-art multicore algorithm, Hybrid, dynami-
cally constructs a quad tree that consists only of skyline
points. The tree is constructed on-the-fly, incrementally,
and sequentially: frequent synchronisation points are
necessary to accommodate the sequential insert phase,
which would cripple performance on the GPU, and pre-
building the tree, as in SkyAlign, requires first knowing
the query result. Moreover, the uncontrolled branching
in the tree traversal makes it impossible to assign points
to warps in a way that would not serialise execution
within each warp on account of branch divergence.

On the other hand, because the CPU has a less re-
strictive threading model than the GPU, the GPU al-
gorithms can easily be ported. This section attempts to
answer three related questions: whether, why, and when
the GPU algorithms port well.

Section 7.2 repeats the experiments of Section 6.2.1,
this time comparing CPU implementations of the algo-
rithms on a 28-core machine and also studying parallel
scalability. We investigate the reasons for the perfor-
mance trends in Section 7.3, which looks closer at the
CPU-based prefilter and the quartile-based partitioning
scheme, and in Section 7.4, which studies low-level met-
rics of compute throughput, branching behaviour, and
cache performance. Finally, Section 7.5 looks closer at
NUMA behaviour by repeating some key experiments
on a quad-socket machine.

7.1 CPU setup and configuration

This section uses a newer generation dual-socket and
a previous-generation quad-socket Intel machine, called
Dual and Quad, respectively. Dual has 188 GB of 2 GHz
DDR4 memory and 2 Intel Xeon E5-2683 v3 2.00 GHz
(Haswell) processors, each with 35 MB L3 cache and 14
cores. Quad has 1 TB of 1 GHz DDR3 memory and 4
Intel Xeon E7-4820 v2 2.00 GHz (Ivy Bridge) proces-
sors, each with 16 MB L3 cache and 8 cores. The use
of Quad is contained in Section 7.5. The key differences
of Quad relative to Dual are that:
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Fig. 10: Execution time on the CPU as a function of n

(left) and d (right) (d = 12, n = 8·106, t = 28, Dual).

– the speed of memory is slower;
– there is 2.0 (not 2.5 MB) of L3 cache per core (and

less than half the L3 cache per socket);
– there are four more cores, but twice as many sockets;
– Ivy Bridge processors use AVX, rather than AVX2,

so the DTs are up to 2× slower (depending on d);
– the QPI intersocket link is 7.2 GT/s vs. 9.6 GT/s.

As our objective is to assess the performance charac-
teristics of GGS and SkyAlign when trivially ported to
the CPU, we modify the implementations used in the
previous section as minimally as possible11 while still
being fair. To adapt to the coarse-grained parallelism
11 CUDA 7 and C++ are similar enough that converting from

the former to the latter is trivial.
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1 2 4 7 8 14 28

SkyAlign 37.0 s 1.95× 3.74× 6.43× 7.28× 11.71× -
- 1.96× 3.82× 6.30× 7.16× 12.31× 20.77×

GGS 811.1 s 1.95× 3.67× 6.40× 7.36× 12.27× -
- 1.98× 3.92× 6.39× 7.29× 12.55× 24.15×

Hybrid 67.6 s 1.95× 3.60× 5.98× 6.71× 10.45× -
- 1.93× 3.75× 5.92× 6.63× 10.43× 16.35×

Table 3: Execution time (n=8·106, d=12, dist=I, Dual)
relative to the number of cores. Single-socket perfor-
mance is listed above double-socket performance.

1 2 4 7 8 14 28

SkyAlign 376 s 1.98× 3.73× 6.51× 7.46× 13.02× -
- 1.98× 3.90× 6.43× 7.34× 12.93× 24.15×

GGS 19912 s 1.93× 3.67× 6.41× 7.31× 12.26× -
- 1.99× 3.91× 6.37× 7.27× 12.59× 23.97×

Hybrid 877 s 1.96× 3.71× 6.26× 7.09× 11.05× -
- 1.97× 3.82× 6.16× 7.06× 11.34× 17.82×

Table 4: Execution time (n=8·106, d=12, dist=A,
Dual) relative to the number of cores. Single-socket per-
formance is listed above double-socket performance.

of the CPU while remaining loyal to the original GPU
algorithms, we make the following modifications:

– We assign an OpenMP dynamic schedule of size 32 to
match the warp size assumed by GGS and SkyAlign;

– DTs are vectorised for both algorithms (as in Hybrid
and BSkyTree) rather than manually unrolled (as
they were on the GPU);

– We use the more aggressive CPU prefilter from [5]
rather than the GPU-friendly one;

– The NoSyncs version of SkyAlign is used, because
there are no warps to repack on the CPU.

Otherwise, the publicly-available implementations12

of SkyAlign and GGS are virtually identical to those in
Section 6 and are deliberately NUMA-oblivious.

7.2 Run-time performance and scalability

Workload scalability In Figure 10, we repeat the
experiments from Section 6.2.1, this time with the GPU
algorithms (SkyAlign and GGS) ported to the CPU; ad-
ditionally, we exploit having more memory by increas-
ing the default cardinality to n = 8·106. As with Fig-
ure 5, Figure 10 shows run times on a logarithmic scale
for each of the four algorithms on each distribution (in-
creasing correlation from top to bottom).

In comparison to Figure 5, the trends remain un-
changed. This is strong evidence in favour of portability
of the GPU algorithms, since their behaviour is consis-
tent on both architectures. Nonetheless, there are sev-
eral interesting contrasts to Figure 5. First, BSkyTree
runs slower on this machine, given the lower clock fre-
quency, whereas Hybrid runs faster, because it benefits
from the extra 24 cores. Given the noteable differences
between Dual and Desktop, we encourage due caution
in directly comparing values across the figures.

On low-dimensional and correlated data, GGS now
typically performs best. It runs faster on the CPU than
12 If the paper is accepted, code will be published as a newer

release of https://github.com/sean-chester/SkyBench.

on the GPU in these cases because it no longer needs
to amortise the cost of host-to-device transfer. On these
simpler workloads, it benefits from its simplicity, whereas
the greater sophistication in the memoisation-based al-
gorithms (BSkyTree, Hybrid, and SkyAlign) is ineffec-
tive overhead. This matches the observation in [5], that
more naive algorithms do best on correlated data.

While BSkyTree was consistently afflicted by the
data skew on the previous machine, the extra 27 MB of
L3 cache available to the single-threaded algorithm here
dampens the effect and produces faster run times on
skewed data than uniform, independent data for some
of the cardinalities. The parallel algorithms, which now
all use the same pre-filter, are all minorly slowed down.

Having increased the workload size for correlated
data, the effect of vectorising DTs is salient, especially
for Hybrid. Since the relative frequency of DTs as a
percentage of computation time is high on correlated
data, the cost of each DT is more important. When
dimensionality aligns with the 128-bit (256-bit) AVX(2)
registers, there is a clear boost in performance.

In general, we observe that SkyAlign outperforms
the state-of-the-art Hybrid on the CPU by a small but
consistent factor. This is an excellent result for an al-
gorithm designed for a different architecture, especially
since Figure 7 shows that SkyAlign and Hybrid have
roughly equal work-efficiency. Subsequent experiments
will identify why this performance difference exists.

Parallel scalability Tables 3 and 4 show how the al-
gorithms scale with parallelism for independent and an-
ticorrelated data, respectively. (None of the algorithms
scale well on correlated data, as will be evident later.)

The leftmost column gives single-threaded run times.
The subsequent columns indicate speed-up relative to
single-threaded performance for a given thread count.
The top row for each algorithm shows single-socket per-
formance; the bottom row, dual-socket. For example, on
anticorrelated data (Table 4), GGS uses 19912 s/12.59 =
1582 s on fourteen cores distributed over two sockets.

GGS scales best, achieving ≈ 24× speed-up on 28
cores for both distributions. However, as the theme of

https://github.com/sean-chester/SkyBench
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Fig. 11: Cumulative count of data points relative to the
number of points in each partition (n = 8·106, d = 6).

this paper has suggested, it also has the worst perfor-
mance for these workloads on account of its poor work-
efficiency. SkyAlign achieves a couple- to several-factor
improvement over Hybrid, and parallelises better, par-
ticularly as the thread count gets relatively high. Inter-
estingly, on this dual-socket machine, none of the al-
gorithms are noticeably affected by NUMA; especially
at 14 threads, dual-socket is often faster. When only
half the cores of each socket are used, there is twice
as much L3 cache available, which compensates for the
additional latency to migrate data across NUMA nodes.

Anticorrelated data produces the best parallel scal-
ability, because MTs are more often false. Therefore,
fewer DTs need to be conducted and branch prediction
is easier. Moreover, there is more work to parallelise.

7.3 Common pre-filtering and grid-based partitioning

Figure 11 analyses the efficacy of the quartile-based
partitioning for each distribution at d = 6: the trends
become more severe as d increases. The x-axis (on a
log scale to illuminate the more interesting small val-
ues) specifies how many points are in a partition, i.e.,
the partition size. These cumulative plots show, for a
given x value, how many points are in a partition that
contains ≤ x points, in order to indicate how well the
partitioning method disperses the dataset into separate
partitions. Observe that, as the partitioning occurs af-
ter the pre-filtering, the maximum y value is precisely
the number of points that were not pre-filtered.

The correlated data is shown in the top-left subfig-
ure, with the dotted line representing the partitions at
the first level of the tree (i.e., only medians) and the
solid line, the second level (i.e., quartiles). In general,
quartile partitions contain fewer points; so, the solid
line reaches higher values earlier. Observe that the peak
value, y = 300, is only 0.00375 % of the dataset. The
pre-filter is extremely effective on the correlated data,
given that each point is very likely dominated by an-
other point that is close to the origin. Even at d = 12
(not shown), only 7 573 points remain after pre-filtering.
As a result, there is not much work to parallelise, mak-
ing the sequential BSkyTree competitive13 and the over-
all difference between all algorithms quite minor. Given
the dearth of points, it is unsurprising that no quartile-
level partition contains more than nine of them.

The anticorrelated data (top-right) expresses the
opposite patterns. The prefilter leaves 2 719 184 6d and
6 983 464 12d points, because there are fewer positive
dominance relationships in the dataset for the prefilter
to exploit. However, this copious incomparability is pre-
cisely what the mask tests (MTs) are leveraging effec-
tively. Naturally, the partition sizes are much larger,
since 2 719 184 points are distributed among only 46 =
4 096 partitions; however, already at d = 12 (not shown)
88 % of data points are in partitions of size ≤ 9.

Considering the independent attributes, with uni-
form (bottom-left) and pareto (bottom-right) distribu-
tions, we expect the latter data points to cluster closer
to the origin. However, the quartiles of the dataset
then similarly cluster closer to the origin, producing
partition sizes that are roughly the same. The most
notable difference between the distributions is instead
the efficacy of the prefilter, which prunes 25 % more of
the pareto data, but this is not a consistent trend: at
d = 12, the prefilter leaves 2 199 119 pareto points and
1 965 026 independent points. Because the attributes
are independent of each other, even for the pareto data,
the points occupy more of the data space and are thus
well dispersed. Already at d = 6, all points are in par-
titions with ≤ 125 points; by d = 12, no partition con-
tains more than 5 points. This dispersion provides near-
unique masks for each point, ergo more effective MTs,
which enables the work-efficiency of SkyAlign.

7.4 Performance profiling

Section 7.2 showed that SkyAlign and GGS scale well
when ported to multicore, and that all three algorithms
are fairly resistant to NUMA effects (although they suf-
13 BSkyTree does not use the pre-filter that the other three

methods use, but its pivot selection routine has a similar effect.
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Fig. 12: Cycles per instruction (CPI) as a function of n

(left) and d (right) (t = 14, Dual, 1 socket).

fer diminishing returns with more active cores, even on
a single socket). It answered whether. Here, we endeav-
our to explain why these trends exist by profiling the
hardware for low-level, concrete explanations.

To derive these explanations, we use the PAPI li-
brary to measure hardware counters from within the
software. Profiling begins immediately before and ends
immediately after the timer of the previous sections;
i.e., it includes the building of the SkyAlign data struc-
ture, running the pre-filters, etc., but not reading of
data from disk to memory. We count the values for each
thread independently, summing them at the end to ob-
tain the values that we report.

A primary goal of these low-level investigations is
to observe not only how these algorithms behave, but
also how the specific GPU restrictions impact CPU
hardware throughput. We profile in three categories,
first looking at instruction throughput in general, then
branching behaviour, and lastly cache performance.

7.4.1 Instruction throughput analysis

This paper proposes trading compute throughput for
work-efficiency. Here, we quantify that trade off for the
CPU implementations. Generally speaking, we expect
that instruction throughput will be a bit higher on the
CPU, because it supports out-of-order execution. That
is to say, while some instructions are stalled by load la-
tencies, other non-dependent instructions, even if they
occur later, can be executed in the meantime. This in-
creases instruction-level parallelism (ILP) relative to
the GPU and helps to hide the load latencies for the
DTs. We profile this with three separate experiments.

First, Figure 12 shows the cycles per instruction re-
tired (CPI) by each algorithm as the workload changes.
Low CPI values indicate high compute throughput (few
cycles are required for each instruction). Values below
1 are possible, because modern computers can retire
multiple instructions at once (via instruction-level par-
allelism). On Intel Haswell architectures the theoretical
minimum average CPI is 0.25, since a maximum of four
instructions can be delivered by the front-end per cy-
cle.14 We measure CPI on a single socket to focus first
on performance profiles without NUMA complications.

We see immediately that Hybrid does not achieve
the same level of compute throughput as the GPU algo-
rithms for most workloads (not correlated and d > 4).
This explains why, with the same work-efficiency as
SkyAlign, it does not achieve the same execution times:
it requires ≥ 2× as many cycles to retire each instruc-
tion. On the other hand, GGS consistently has near-best
or best compute throughput of the algorithms, typi-
cally ≤ 0.30 for workloads that are not correlated and
for which d > 6. Yet, on these very workloads it is the
slowest running algorithm. Together, these observations
indicate the mutual importance of compute throughput
and work-efficiency.

Looking closer at cardinality for non-correlated data,
GGS and Hybrid are very stable; SkyAlign exhibits im-
proved CPI with increasing workload size, even surpass-
ing GGS on high-cardinality or anticorrelated data.

We observe different behaviour with respect to di-
mensionality. Here all algorithms improve on correlated
data, as the amount of computational work increases.
Note that even at d = 16, the CPI is barely under 1.0
and worse than the other distributions. This partly ex-
plains the universally poor scalability on the distribu-
tion. The CPI of SkyAlign degrades on anticorrelated
data as d increases, but still remains ≤ 0.35.

14 Up to eight instructions can be retired in a cycle if they are
ready for execution, but the front-end (the instruction fetch-
decode cycle) populates the queue at a slower rate.
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Fig. 13: Cycles by number of µops executed (Dual,
n = 8·106, d = 12, t = 28). Bars have increasing µops
towards the left and are coloured by superscalar perfor-
mance: violet is outpacing the front-end; cyan is super-
scalar; green exhibits no ILP; and red is stalled.

Figure 13 provides another view of compute through-
put by directly reporting instruction-level parallelism
(ILP). The cycle count is plotted on the x-axis, bro-
ken down by how many micro-operations (µops) were
retired on each cycle. Retiring more µops in a cycle re-
quires more ILP and lowers the CPI (and run time).
Note that, to represent Hybrid and SkyAlign more
clearly, GGS is compressed by an order of magnitude
in all cases and SkyAlign is similarly compressed on
correlated data. On red cycles, no µops were executed
(i.e., execution was stalled); green cycles retire only one
instruction, obtaining poor throughput; cyan to violet
cycles indicate increasing ILP.
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Fig. 14: Breakdown of µops by port (n = 8·106, d = 12,
t = 28, Dual), ordered by port number from left to
right. Ports are coloured by similarity of function.

We can see a general alignment between Figure 12
and Figure 13: non-correlated data, which feature lower
CPI values, have significantly fewer stalled cycles than
correlated data. On correlated data, for all algorithms,
more than half of cycles are stalled. As a result, adding
more cores does not improve performance much, since
existing cores are stalled anyway.

Hybrid has fewer superscalar cycles (cycles with
more than one µop retired). In constrast, SkyAlign on
anticorrelated data, in particular, retires at least 3 µops
on 75 % of cycles. This high ILP drives the relatively
lower CPI of SkyAlign.

Figure 13 also provides the first insight into parallel
scalability: for each distribution, values for 14 threads
on one socket are given above those for 28 threads on
two sockets. Observe that for SkyAlign and GGS, nei-
ther the overall number of cycles nor the distribution of
µops retired changes when extra threads are added (for
non-correlated data). On the other hand, Hybrid gains
cycles and the new cycles almost exclusively retire ≤ 1
µop. Adding extra cores for Hybrid also adds extra cy-
cles (with no ILP) in overhead. For correlated data, GGS
still maintains roughly the same profile, but Hybrid and
SkyAlign gain considerable stalled and non-ILP cycles.

Figure 14 presents our last view of compute through-
put. Here we show how µops are distributed on the dif-
ferent execution ports. Intel Haswell architectures have
eight execution ports, and each is responsible for only
a subset of possible µops. While ILP depends on a di-
verse use of executions ports, a high ratio of compute
operations (on ports 0, 1, 5, and 6) to other operations
minimises reliance on the higher latency memory sub-
system. Thus, this figure give both a view of potential
ILP and of compute-ratio. The green ports correspond
to ones primarily responsible for compute and vector
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Correlated Independent Anticorrelated
SkyAlign 1.7·106 (0.92 %) 1.1·109 (1.85 %) 6.4·109 (0.85 %)
GGS 6.4·105 (0.49 %) 1.3·109 (0.10 %) 1.1·1010 (0.04 %)
Hybrid 7.5·105 (2.85 %) 2.1·109 (3.55 %) 2.3·1010 (3.02 %)

Table 5: Number of branch instructions mispredicted
(with misprediction rate in parentheses) relative to data
distribution (n=8·106, d=12, t = 28, Dual).

µops, where, for example, DTs and MTs are executed.
The blue ports are primarily responsible for memory
operations (stores and loads), and the red port 6 is a
newer port on Intel Haswell architectures that, in the
case of these algorithms, does MTs and branching.

We make two interesting observations here: first,
there is a disproportionately large number of µops being
executed on Port 6 for Hybrid, which does not promote
ILP. This suggests there may be quite a lot of branch-
ing logic, which, relative to the GPU algorithms, we
might expect. Second, SkyAlign has an especially high
ratio of µops on compute ports (0, 1, 5, and 6) rela-
tive to memory ports (2 and 3). Generally speaking,
a good compute-ratio (i.e., a large number of compute
operations per memory operation) is favourable for par-
allelism. This is what we would hope to see by swapping
DTs for MTs, that the overall load on the machine for
memory-related operations would decrease.

To summarise our instruction throughput findings,
the throughput of Hybrid is quite good, with a CPI less
than 1 for the majority of workloads. Consequently, it
obtains a performance boost from adding cores. How-
ever, the addition of cores adds more stall cycles, so
the return on parallel scalability diminishes at higher
thread counts. By contrast, the algorithms developed
for the GPU clearly obtain good instruction through-
put on the CPU, where additional ILP comes from out-
of-order execution. They achieve CPI values close to
the theoretical optimum on harder workloads, partly
because they have a diverse distribution of µops onto
different ports, which leads to more superscalar cycles.

These three experiments have demonstrated that
the GPU algorithms port well in terms of through-
put onto multicore, but the central question of why
remains unanswered. The next experiments look into
what causes the high ILP or, conversely, the stalls.

7.4.2 Branch prediction

A central tenet of GPU algorithms (c.f., Section 2.2) is
to minimise branching. While the GPU requires branch-
free code on account of step-locked threads, the CPU
also benefits from having better branch prediction. Here

Correlated Independent Anticorrelated
SkyAlign 1.0·108(5.84 %) 5.9·1010(23.2 %) 3.6·1011(11.9 %)
GGS 7.1·107(2.77 %) 1.2·1011(1.97 %) 5.9·1011(0.49 %)
Hybrid 5.2·107(24.4 %) 1.7·1011(36.2 %) 2.0·1012(35.9 %)

Table 6: Number of µops issued but not retired (and as a
percentage of issued µops) relative to data distribution
(n=8·106, d=12, t = 28, Dual).

we look at how significantly the branching aversion of
the GPU algorithms impacts performance on the CPU.

Table 5 shows branch mispredictions for the algo-
rithms, both as absolute numbers and rates. Unsurpris-
ingly, we observe the misprediction rates of the GPU
algorithms are low. GGS is particularly impressive: de-
spite an order of magnitude more branch instructions
than the other algorithms (on account of its poor work-
efficiency), it has fewer mispredictions than Hybrid con-
sistently, and never more than twice that of SkyAlign.

Hybrid and SkyAlign necessarily have more branch-
ing, because they contain more logic to avoid unneces-
sary work. SkyAlign has consistently better branch pre-
diction rates than Hybrid. Recall that both algorithms
feature a tree traversal. Neither tree exhibits clearly
strided behaviour in patterns of whether or not to visit
child nodes; so, branch prediction will be difficult in
both cases. However, since SkyAlign is a static parti-
tioning, points are grouped by their relation (i.e., me-
dian and quartiles masks) relative to the data space and
branches are determined by the masks of the groups.
Consequently, there are likely to be “runs” of consec-
utively branching in the same direction. This is much
less likely with Hybrid, where the relationship between
a point and the root of the current subtree is determined
dynamically; in this case, such “consecutive runs” are
likely to be broken quickly and often.

Table 6 presents a different view of branch mispre-
dictions: it describes the number of µops that are issued
but never retired, again both in absolute numbers and
as a rate. This roughly quantifies the bad speculation,
µops that exist downstream on a branch misprediction
prior to its being recognised as such. Between the ma-
chine clears required per branch misprediction and the
number of badly speculated instructions in this table,
we can capture the rough cost of branch misprediction.

The general patterns are, unsurprisingly, the same
as in Table 5, except that GGS has more badly specu-
lated µops than Hybrid on correlated data. Also, the
ratios between algorithms change. These changing ra-
tios suggest a difference in how deep are the pipelines
that need to be cleared per branch misprediction. In
the case of GGS, where the branch misprediction rate is
very low, each misprediction’s cost is relatively higher.
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Correlated Independent Anticorrelated
SkyAlign 7.1·108(32.3 %) 1.2·1011(46.9 %) 1.9·1012(71.5 %)
GGS 7.3·108(67.5 %) 5.5·1012(93.3 %) 1.1·1014(97.0 %)
Hybrid 1.2·107(5.74 %) 9.0·109 (1.95 %) 2.2·1011(4.00 %)

Table 7: Number of µops delivered from the Loop
Stream Detector (and as a percentage of all issued µops)
relative to distribution (n=8·106, d=12, t = 28, Dual).

Finally, Table 7 illustrates an interesting side-effect
of good branch prediction. The loop stream detector
(LSD) on a modern Intel machine can cache the front-
end work in fetching and decoding instructions for small
loops. When the LSD is active, the unused front-end
components of the execution pipeline are temporarily
disabled, saving both cycles and energy. The LSD re-
quires loops with ≤ 28 instructions and is de-activated
at the first misprediction of the loop’s condition. Ta-
ble 7 shows how many µops are delivered from the LSD
rather than the usual, full-fledged front-end pipeline.

Remarkably, GGS is almost entirely satisfied by the
LSD, and SkyAlign obtains one third to three quarters
of its µops from the LSD. None of the three algorithms
are front-end bound, so, except for the potential energy
savings, LSD utilisation is perhaps not significant itself.
However, such extensive use of the LSD requires highly
predictable branching in the most frequently executed
inner loops. Therefore, it presents alternative evidence
that, not only is the branching behaviour good for the
GPU algorithms, but it is also good exactly where the
majority of the µops are being delivered.

As for Hybrid, it is not just the higher branch mis-
prediction rates that render the LSD unusable. Hybrid
also features a larger inner loop that exceeds the 28 in-
struction limit. This is directly a result of needing to
conduct DTs in order to traverse the tree, which pro-
vides enough additional instructions to surpass the LSD
limit. (Recall SkyAlign only conducts DTs at the leaves
of the tree, not at the inner nodes of the traversal.)

7.4.3 The memory subsystem

Figure 13 indicated that all algorithms have stalled cy-
cles. Even in the best case, SkyAlign on anticorrelated
data had 25 % of cycles retiring two or fewer µops (i.e.,
at fifty percent capacity or less). This subsection looks
at the performance of the memory hierarchy to identify
the source of the stalled cycles. Our design choices for
the layout of the data structures (principally, padded
data points and non-padded bitmasks) are tested here.

Table 8 describes the number of cache misses for
each algorithm, both in absolute numbers and as a rate.
For each algorithm, the table contains two rows, one for

Correlated Independent Anticorrelated

SkyAlign 1.6·107(85.9 %) 1.2·109(44.4 %) 9.4·109 (66.0 %)
6.2·106(37.9 %) 3.3·107(2.77 %) 2.4·108 (2.51 %)

GGS 1.6·107(77.3 %) 7.1·108(0.13 %) 6.0·109 (0.05 %)
6.0·106(36.2 %) 1.3·108(18.4 %) 2.7·109 (44.8 %)

Hybrid 3.3·105(12.7 %) 9.0·109(72.3 %) 1.5·1011(76.9 %)
5.2·104(15.7 %) 1.3·107(0.14 %) 9.4·108 (0.62 %)

Table 8: Number of cache misses (and as a percentage of
cache accesses) relative to data distribution (n=8·106,
d=12, t = 28, Dual). L2 misses are listed above L3.

the L2 cache that is local to each core (above) and one
for the shared L3 cache (below). L3 misses are always
fewer than L2 misses, because Haswell machines have
inclusive caches: any cache line in L2 is also in L3.

Considering non-correlated data, we see that GGS
has significantly better usage of its L2 cache than do
either SkyAlign or Hybrid, in fact having fewer abso-
lute misses despite orders of magnitude more accesses.
This testifies to the efficacy of the tiling in GGS: a block
of α points are loaded into L2 cache and then thor-
oughly processed. Hybrid also attempts tiling, but has
a much more difficult time of it. The tiling is easy for
GGS, because it simply loads a block of points and then
conducts DTs between those points and non-dominated
points. However, Hybrid attempts to skip work at the
same time. If α is chosen too small for Hybrid, then
there is not enough work to parallelise. On the other
hand, a large value of α and some bad luck leads to
cache eviction, a difficult and data-dependent balance
to strike. This NoSync version of SkyAlign foregoes at-
tempts at tiling, so has poor L2 performance. There
is no NoSync option for Hybrid, because Hybrid con-
structs its tree on-the-fly, thereby requiring the tiling
and synchronisation to construct its data structure.

Hybrid outperforms SkyAlign in terms of cache miss
rates, but SkyAlign has significantly fewer absolute
L2 misses (on non-correlated data) on account of hav-
ing fewer L2 accesses. This testifies to the success of
SkyAlign in minimising memory operations by replac-
ing DTs with MTs in the tree traversal. Although each
data point fits on a cache line, each cache line fits sixteen
bitmasks; so, each L2 access provides the masks required
for the next sixteen sequential MTs. Hybrid needs to
fetch the actual data points in order to construct the
bitmasks for the MTs, rather than pre-computing them
as in the global, static partitioning scheme of SkyAlign.

Hybrid has the best off-core (> L2) cache perfor-
mance, at least as a percentage. This is important, be-
cause while off-core latencies are highest, they are also
the most susceptible to NUMA effects: using additional
sockets leads to a last level cache that is no longer
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Correlated Independent Anticorrelated

SkyAlign 1.4·109(56.0 %) 1.4·1010(13.1 %) 8.0·1010(8.20 %)
1.6·109(68.2 %) 1.9·1010(18.1 %) 1.1·1011(11.0 %)

GGS 8.5·108(52.2 %) 2.6·1010(1.15 %) 6.3·1011(1.33 %)
1.0·109(61.4 %) 1.7·1011(7.53 %) 3.5·1012(7.35 %)

Hybrid 9.6·107(39.0 %) 2.9·1010(11.6 %) 5.3·1011(17.8 %)
1.0·109(48.3 %) 4.4·1010(18.0 %) 6.5·1011(21.5 %)

Table 9: Number of cycles stalled with pending cache
requests (and as a percentage of cycles) relative to data
distribution (n=8·106, d=12, t = 28, Dual). L2 stalls
are above those for the entire memory subsystem.

shared among all cores. For Hybrid, which writes to
its last-level cache as it updates its data structure on-
the-fly, this also leads to cache-coherency issues.

The good L3 cache performance of Hybrid arises
from its traversal strategy. Nodes near the top of the
tree are visited more often; so, the points corresponding
to the roots of large sub-trees are frequently accessed
and likely L3-resident. In contrast, SkyAlign accesses
raw data points very unpredictably, so these are much
less likely to be L3-resident; L3-resident points are those
in partitions with very low median and quartile bit-
masks, against which many points are required to con-
duct DTs. For GGS, which has the worst L3 cache perfor-
mance, each data point must be fetched from memory
when the thread first begins work on it. However, sub-
sequent L2 cache performance compensates this cost.

Table 8 indicated how frequent cache misses were,
but that does not necessarily mean that they are re-
sponsible for the stalls; all three algorithms have mech-
anisms for hiding latency. GGS has very good branch
prediction, enabling the pre-fetcher to retrieve the data
points well in advance. SkyAlign has very good ILP, so
the out-of-order execution engine can busy itself with
other work. Hybrid has good L3 cache performance to
minimise the frequency of the worst-case memory laten-
cies. Table 9 describes how often cache misses coincide
with stalled cycles, giving a truer estimate of how often
the execution ports are starved by missing operands.

Like before, stalls coincident with L2 pending re-
quests are shown above those for the entire memory
subsystem. Unlike before, L2 stalls are a subset of mem-
ory stalls and therefore always less frequent. A low value
of L2 relative to memory stalls would indicate L2-bound
computation. This is not true of any of the algorithms,
which instead are stalled by L3/memory load requests.

The poor compute throughput on correlated data
is explained by a very high percentage of cycles wait-
ing for memory loads. Clearly, then, adding additional
cores on correlated data is ineffective, as it will simply
increase demand for memory loads. We can also ob-

1 2 4 8 16 32

SkyAlign
48.1 s 1.89× 3.64× 7.04× - -

- 1.94× 3.69× 6.94× 13.23× -
- - 3.77× 6.77× 12.47× 23.61×

GGS
1196.9 s 1.78× 3.43× 7.34× - -

- 1.85× 3.54× 6.77× 14.35× -
- - 3.67× 6.91× 13.32× 27.79×

Hybrid
84.7 s 1.88× 3.55× 6.60× - -

- 1.94× 3.60× 6.52× 11.20× -
- - 3.70× 6.57× 11.17× 16.54×

Table 10: Execution time (n=8·106, d=12, dist=I,
Quad) relative to the number of cores. Single-, dual-,
and quad-socket performance are listed vertically.

serve that the ratio of cache stalls between SkyAlign
and Hybrid is roughly proportionate to the difference in
their running times. An interesting observation is that
Hybrid suffers fewer L3 misses but more memory stalls
than SkyAlign. This relates back to its high compute-
ratio: With more compute µops per cache line read and
ILP for the out-of-order execution engine to exploit,
SkyAlign can hide latencies better. By contrast, laten-
cies are not hidden as well in Hybrid nor especially in
GGS, because all cores stop and synchronise at the same
time when done their tiles, which creates a bursty be-
haviour to the reads from (potentially off-socket) mem-
ory. Thus, we conclude that it is the combination of
increased number of absolute L2 accesses (resulting in
more L2 misses and moreover more L2 stalls) and de-
creased ability to hide the resultant latencies that ex-
plains the difference in performance between the algo-
rithms. The re-use of cache lines containing quartile-
level masks, rather than the dynamic computation of
bitmasks, reduces the total number of memory accesses.

GGS does remarkably on these metrics too, often
with a competitive number of absolute L2 and memory
stalls. However, it is the sheer volume of work done by
the algorithm that prevents its good compute through-
put from materialising as raw performance, except on
correlated data where no algorithm has much work.

7.5 Scalability across NUMA architectures

Given that the memory subsystem stalls are limiting
the compute throughput on many workloads, we inves-
tigate here the effect that the higher NUMA latencies
on the Quad machine might have on performance.

7.5.1 Parallel scalability

Tables 10 and 11 repeat on the quad-socket machine the
experiments in Tables 3 and 4 for independent and anti-
correlated data, respectively. They show single-threaded
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1 2 4 8 16 32

SkyAlign
492 s 1.89× 3.66× 7.29× - -

- 1.97× 3.76× 7.18× 14.20× -
- - 3.88× 7.29× 14.07× 27.25×

GGS
24606 s 1.77× 3.42× 7.34× - -

- 1.84× 3.53× 6.76× 14.40× -
- - 3.67× 6.93× 13.32× 28.03×

Hybrid
1298 s 1.85× 3.54× 6.82× - -

- 1.91× 3.47× 6.42× 11.57× -
- - 3.59× 6.35× 11.20× 18.07×

Table 11: Execution time (n=8·106, d=12, dist=A,
Quad) relative to the number of cores. Single-, dual-,
and quad-socket performance are listed vertically.

execution time (leftmost column) and parallel scalabil-
ity at various thread and socket counts. Compared to
before, each algorithm is given an extra (lower-most)
row to show performance on four sockets.

Comparing the tables directly, single-threaded exe-
cution of each algorithm is slower on the quad-socket
machine. This is unsurprising given the slower DDR3
memory (thus higher memory latencies) and that the
single active core has less L3 cache at its dispense. Each
DT also requires an extra AVX instruction at d = 12.

We can also directly compare speed-ups for 2, 4, and
8 cores on 1 and 2 sockets. Consistently, we see that par-
allel scalability is slightly reduced on the quad-socket
machine. This is explained (and shown in the next ex-
periments) exactly as for single-threaded performance:
utilising more cores places greater stress on the increas-
ingly scarce L3 cache and does not alleviate the higher
latencies of outstanding cache misses.

For t < 16, using extra sockets produces faster run
times than fewer sockets with more L3 sharing. Thus,
the NUMA latencies at low core counts are compen-
sated by the higher availability of L3 cache per active
socket. At t = 16, all four sockets are half-occupied,
and competition for all resources becomes greater. The
trend reverses, and NUMA latencies are no longer com-
pensated by doubly-available L3 cache.

As in Table 3 and 4 we see that all algorithms scale
better on anticorrelated data. The GPU algorithms still
scale reasonably well, with both getting > 25× speed-
up on 32 cores. Hybrid struggles to utilise the fourth
socket, obtaining minimally better speedup on 32 cores
as on the 28 cores of the dual-socket machine.

7.5.2 Performance profiling

Table 12 repeats on Quad the experiment from Table 9,
using all 32 cores. It reports the number of stalled cy-
cles (no instructions executed) coincident with a pend-
ing L2 (top row) or any memory (bottom row) load

Correlated Independent Anticorrelated

SkyAlign 8.9·108(40.1 %) 1.8·1010(13.7 %) 1.2·1011(9.09 %)
1.1·109(48.5 %) 2.4·1010(19.0 %) 1.5·1011(11.7 %)

GGS 8.5·108(49.0 %) 4.3·1010(1.38 %) 6.5·1011(1.05 %)
9.6·108(55.2 %) 2.6·1011(8.27 %) 4.3·1012(6.89 %)

Hybrid 1.0·108(36.7 %) 4.9·1010(15.1 %) 1.3·1012(31.6 %)
1.0·109(48.3 %) 7.5·1010(23.1 %) 1.5·1012(35.5 %)

Table 12: Memory stalls (n=8·106, d=12, t = 32, Quad).
L2 stalls are above the whole memory subsystem’s.

request. The number of memory stalls as a percentage
of all cycles is given in parentheses. Because there is
less cache per core, we expect a higher L3 miss ratio.
Because cores are distributed across four sockets, we ex-
pect a higher latency for L3 misses and for reading from
memory. Finally, because memory is half the speed on
Quad, we expect that latencies in general should go up.

Comparing the tables directly, we see that GGS and
SkyAlign do not exhibit substantial differences between
the tables (except that SkyAlign suffers fewer stalls
on correlated data). Hybrid, on the other hand, suffers
quite dramatically on non-correlated data, spending up
to one third of cycles stalled on memory requests. Since
the increased general memory stalls are also observed as
L2 stalls, the responsible loads are off-core, which aligns
with our expectations. This demonstrates that the bet-
ter memory access patterns of the GPU algorithms (i.e.,
tiling for GGS and cache-line reuse for SkyAlign) is in-
creasingly important as latencies increase.

A couple other interesting differences arise between
the machines, which we briefly describe. Ivy Bridge has
two fewer execution ports than Haswell; so, we investi-
gate whether this affects instruction-level parallelism of
the algorithms (c.f., Figure 14). Naturally, the loss of an
arithmetic ALU functional unit on Port 6 means that
µops must be redistributed to other ports on the Ivy
Bridge architecture, reducing the number of simultane-
ous compute operations that can be executed. Still, the
compute-ratios are roughly the same and only a small
percentage of cycles in Figure 14 had retired more than
5 instructions, anyway. LSD utilisation is higher for all
algorithms on the quad-socket machine, and quite no-
tably so for Hybrid: compared to Table 7, 20.0 % and
32.0 % of µops are delivered by the LSD for indepen-
dent and anticorrelated data, respectively. Nonetheless,
this is still substantially less than the GPU algorithms.

7.6 Summary

In summary, the GPU algorithms obtain very good per-
formance when ported to the CPU, even in a NUMA-
oblivious manner. The tiling in GGS leads to excellent
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utilisation of L2, and the predictable nature and spe-
cific placement of the branch instructions leads to low
branch misprediction rates and activation of the loop
stream detector. For SkyAlign, the sequential reading
of bitmasks utilises each cache line well thereby requir-
ing significantly fewer cache accesses. GGS cannot be
shielded from its poor work-efficiency, but the work-
efficient SkyAlign obtains a multiplicative improvement
over existing state-of-the-art multicore skyline compu-
tation (namely Hybrid) on account of its throughput.
The trade-off on the GPU hardly showed on the CPU.

The quad-tree design of the Hybrid algorithm hurt
its parallel scalability, especially on NUMA: the more
complex loop does not fit in the LSD; the reading of
entire data points, rather than multiple bitmasks com-
pressed onto one cache line, leads to more cache accesses
and, inevitably, stalls; and the cache-sharing for mod-
ified cache lines in the data structure degrades in the
presence of NUMA effects, because of cache-coherency.

However, SkyAlign also is not perfect: its L2 miss
rate is volatile and high, since it does not utlise tiling;
it suffers from a large number of badly speculated µops
when it mispredicts branches; and it struggles to recu-
perate the cost of constructing its data structure when
the amount of subsequent computation is quite small.
However, for a direct port, it obtains excellent perfor-
mance, both in terms of raw run time and hardware
metrics, yielding a new, more scalable state-of-the-art.

8 Conclusion

In this paper, we first investigated skyline computation
on the GPU. We showed that existing algorithms, may
utilise the GPU card well, but lack the work-efficiency
to justify the use of the co-processor. We introduced a
new static, global partition-based method, SkyAlign,
that achieves lower compute throughput, but that does
orders of magnitude less work. This serves as an ex-
ample of how sophisticated algorithms can outperform
high-throughput, but relatively naive, algorithms, even
on the massively parallel GPUs. We then studied how
well the GPU algorithms perform when ported to mul-
ticore. By exposing a lot instruction-level parallelism
and minimising memory stalls, SkyAlign obtains higher
compute throughput than the existing multicore state-
of-the-art, which leads to better raw performance. Thus,
emphasising work-efficiency led not just to better GPU
performance, but also to a portable parallel algorithm.
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